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Assessing the significance of multiple and dependent comparisons is an important, and

often ignored, issue that becomes more critical as the size of data sets increases. If not

accounted for, false-positive differences are very likely to be identified. The need to

address this issue has led to the development of a myriad of procedures to account for

multiple testing. The simplest and most widely used technique is the Bonferroni meth-

od, which controls the probability that a true null hypothesis is incorrectly rejected.

However, it is a very conservative procedure. As a result, the larger the data set the

greater the chances that truly significant differences will be missed. In 1995, a new

criterion, the false discovery rate (FDR), was proposed to control the proportion of false

declarations of significance among those individual deviations from null hypotheses

considered to be significant. It is more powerful than all previously proposed methods.

Multiple and dependent comparisons are also fundamental in spatial analysis. As the

number of locations increases, assessing the significance of local statistics of spatial

association becomes a complex matter. In this article we use empirical and simulated

data to evaluate the use of the FDR approach in appraising the occurrence of clusters

detected by local indicators of spatial association. Results show a significant gain in

identification of meaningful clusters when controlling the FDR, in comparison to more

conservative approaches. When no control is adopted, false clusters are likely to be

identified. If a conservative approach is used, clusters are only partially identified and

true clusters are largely missed. In contrast, when the FDR approach is adopted, clus-

ters are fully identified. Incorporating a correction for spatial dependence to conserv-

ative methods improves the results, but not enough to match those obtained by the

FDR approach.
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Introduction

Tobler’s First Law of Geography says that ‘‘everything is related to everything else,

but near things are more related than distant things’’ (Tobler 1979). This law applies

to any phenomena that have a spatial nature, with considerable implications for

studies in disciplines such as sociology, demography, economics, epidemiology,

urban planning, ecology, biology, archeology, and, of course, geography. The sta-

tistical investigation of these phenomena has been called spatial data analysis

(Bailey and Gatrell 1995). The objectives are identification of the spatial distribu-

tion of the data, spatial patterns, and the occurrence of outliers (Anselin 1996). A

spatial arrangement can be clustered, dispersed, or random depending on the ob-

served spatial dependence (also referred to as spatial autocorrelation or spatial as-

sociation). Measures of spatial association can be global or local. Global measures

consider all available locations simultaneously, utilizing a single statistic that sum-

marizes the spatial pattern. However, the larger the number of locations, the less

will be the interpretability of the statistic, as a spatial pattern can vary substantially

by location. Local measures represent the association between each location and its

neighbors based on defined distances. One statistic is provided for each location,

facilitating the identification of clusters, testing of stationarity assumptions, and in-

ference about distances over which spatial association occurs (Getis and Ord

1996). Anselin (1995) proposed criteria to classify a statistic within a class of local

indicators of spatial association (LISA).

Local statistics rely on tests of spatial association for each location in the data,

and the issue of multiple comparisons is a concern when assessing their signifi-

cance (Kurtz et al. 1965; Miller 1981; Tukey 1991). In other words, if multiple

inferences (tests) are drawn from a given data set, the selection of statistically sig-

nificant effects/differences is carried out utilizing formal multiple comparison meth-

ods. As a result, the probability that some differences will be declared significant by

chance alone cannot be neglected and needs to be controlled. Multiplicity arises in

situations where more than one comparison/test is to be evaluated. In this setting,

the Type I error rate is the probability of rejecting one or more null hypotheses

when each one is, in fact, true. This overall simultaneous error rate will frequently

exceed, often substantially, the nominal Type I error rate, a, for a single compar-

ison/test. Historically, a standard criterion for significance when multiple tests are

carried out is the demand that the probability of any single false positive among all

tests carried out is at most 0.05. This strict criterion has been used primarily in

studies where only a few comparisons are expected to yield meaningful differences,

and the Bonferroni adjustment is a simple and trustworthy procedure for assuring

simultaneously that the probability of any single Type I error is no greater than a.

In the context of spatial analyses in geography, where hundreds, or even thou-

sands, of comparisons are to be carried out, using a procedure that guards against

any single false positive occurring is often going to be much too strict and will lead

to many missed meaningful findings. This issue is not unique to geography. Indeed,

Controlling the False Discovery RateMarcia Caldas de Castro and Burton H. Singer

181

 15384632, 2006, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.0016-7363.2006.00682.x by U

niv of Sao Paulo - B
razil, W

iley O
nline L

ibrary on [14/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



it has already led to extensive investigation and use of alternative criteria and mul-

tiple comparison adjustment strategies in genomewide studies in molecular genet-

ics (Storey and Tibshirani 2003), functional magnetic resonance imaging in

neurobiology, complex plant breeding studies (Basford and Tukey 1999), and anal-

yses of state-to-state differences in educational achievement (Williams, Jones, and

Tukey 1999).

In addition to the multiple comparisons issue, local statistics are calculated on

the basis of a defined neighborhood determined by a selected distance, and the

results for locations containing common neighbors are likely to be correlated (An-

selin 1995; Getis and Ord 1996; Rogerson 2001). Therefore, although largely ig-

nored in spatial data analysis research, a correction procedure to account for both

multiple and dependent tests is recommended. Up to now, the most common ap-

proach has been the use of classical—and overly conservative—multiple compar-

ison procedures (MCPs) such as Bonferroni and Sidak corrections (Anselin 1995;

Getis and Ord 1996, 2000). A recent application adopted a sharper Bonferroni

correction based on a stepwise procedure (Paez, Uchida, and Miyamoto 2002),

which provides slightly less conservative results (Hochberg 1988; Hommel 1988;

Liu 1996). Regarding spatial dependency, Getis and Ord (2000) proposed a method

to account for common neighbors shared by nearby locations.

In this article we evaluate for the first time the use of a multiple testing pro-

cedure introduced by Benjamini and Hochberg (1995) for the purposes of assessing

the significance of statistics of local association. The procedure is a useful com-

promise between the rigidity of assuring simultaneously—via, for example, the

Bonferroni approach—that the probability of any single type I error is no greater

than a, and the lack of control associated with comparisons unadjusted for mul-

tiplicity. It is called the false discovery rate (FDR), and controls the average rate that

declarations of significance are truly nonsignificant (Benjamini and Hochberg

2000). Recent applications of FDR as a controlling procedure are in state-of-the-

art genome research (including DNA microarray analysis) and neuroimaging, both

entailing extremely large data sets (Storey and Tibshirani 2001, 2003; Efron and

Tibshirani 2002; Genovese, Lazar, and Nichols 2002). We also extend the Getis

and Ord (2000) spatial dependence method to conservative procedures to assess if

their performance improves significantly so that they would provide results similar

to those obtained with the FDR approach.

The FDR procedure naturally leads to more ‘‘significant’’ findings than would

be the case using a conservative approach such as Bonferroni. Whether or not these

are meaningful findings—or discoveries —depends upon the particular scientific

context. To acquire some insight about the use of the FDR in geography, we apply it

to two kinds of problems. First, we study a real data situation—malaria on the

Amazon frontier—involving many comparisons and where we understand enough

about the science to know whether or not we are getting meaningful results. We

also compare our FDR-based analyses with what is learned, or not, using more

conventional criteria. Second, we simulate a spatial data set, where we
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obviously know, in advance, what is the signal and what is the noise, and compare

the performance of the different MCP approaches.

Local statistics: multiple and dependent tests

The class of local statistics was first proposed by Getis and Ord (1992). Anselin

(1995), while further developing these statistics, stated that they had two main

purposes: (i) detection of local pockets of nonstationarity, which may be a result of

atypical observations (outliers) or the presence of different spatial regimes, and (ii)

identification of significant local clusters. LISA statistics (Anselin 1995), are a pow-

erful tool for exploratory spatial data analysis (ESDA). In general matrix notation,

they can be expressed as

Gi ¼
Xn

j

wijyij ð1Þ

where C is a particular measure of spatial association, n is the total number of lo-

cations, wij are the elements of a weight matrix W that characterizes the relation-

ship between location i and the other locations j, and yij are the elements of a

matrix Y representing the interactions between location i and the other locations j

(Getis and Ord 1996). The possible interactions represented in the Y matrix can be

expressed as an addition, subtraction, multiplication, division, covariance, or com-

binations of the first four types. Each one will generate a different kind of local

statistic. Getis and Ord (1996) highlight six statistics to measure local association:

Moran’s Ii—based on covariance; Geary’s ci, K1i, and K2i—based on differences;

and Gi(d) and G�i ðdÞ—based on additive interactions. The first two are considered

as part of the LISA statistics as defined by Anselin (1995), while the remaining are

generally accepted as an overall class of LISA indicators (Getis and Ord 1996).

Inference regarding the significance of Moran’s Ii, Geary’s ci, and Gi(d) and G�i ðdÞ
are made based on a null hypothesis of no spatial association between the real-

ization of a variable at location i and its neighbors, and tests for each location are

compared with critical values of the normal distribution.

In this article we focus on Moran’s Ii, Gi(d), and G�i ðdÞ. All these statistics fa-

cilitate the identification of a clustering pattern. The G�i ðdÞ statistic, in particular,

indicates the presence of clusters of high or low values surrounding a particular

location i within a radius of distance d from i. Considering an area divided into n

locations, each identified with a point i and associated with a value xi (a realization

of a random variable X), the G�i ðdÞ statistic is defined as (Getis and Ord 1992)

G�i ðdÞ ¼
Pn

j¼1 wijðdÞxjPn
j¼1 xj

ð2Þ

where wij are the elements of a weight matrix. Ord and Getis (1995) generalized

Equation (2) so that G�i ðdÞ values are given as standard normal variates ðZ ½G�i ðdÞ�Þ.
Under the null hypothesis ðZ ½G�i ðdÞ�Þ are asymptotically normally distributed,
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N (0,1), as n ! 1 (Getis and Ord 1992). Therefore, significant negative Z ½G�i ðdÞ�Þ
reveals spatial clustering of low values of X within distance d, while significant

positive Z ½G�i ðdÞ�Þ are indicative of spatial clustering of high values of X within

distance d. Choosing the right distance is a key factor. When d is very small or very

large (covering the total area) normality is lost. Getis and Ord (1996) suggest that

the maximum distance should never exceed 1/2 of the shorter side of the study area,

while the number of neighbors should be at least 30 for large samples and 8 for

small ones. However, there is no definite rule to guide the decision. It is also im-

portant to mention that edge cells are not a cause of concern, unless the distance

chosen results in a very small number of neighbors for those cells, which could

compromise the convergence of the statistic to normality.

The Gi(d) statistic is analogous to the G�i ðdÞ, with the difference that the value

of location i is not included in the sum. In other words, Gi(d) is defined as Equation

(2) for j 6¼i. It is particularly useful for spread and diffusion studies. Moran’s Ii is

defined as (Anselin 1995)

Ii ¼ ðzi=s
2Þ
Xn

j¼1

wijzj; j 6¼ i ð3Þ

where wij are the elements of a weight matrix; zi and zj are deviations from the

mean, ðxi � �xÞ and ðxj � �xÞ, respectively; and s2 ¼
Pn

i¼1 z2
i =n. Standard normal

variates for the statistic, Z(Ii), are also computed (Anselin 1995) and the assessment

of significance is based on a normal distribution. Significant high values of Z(Ii)

indicate a cluster of similar values (either high or low), while significant low values

of Z(Ii) indicate a cluster of dissimilar values.

Assessing the significance of any of these local statistics requires careful

attention. First, each location i is assigned a test and the rejection or retention of

the null hypothesis raises questions of multiplicity. Second, local statistics have two
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Figure 1. Selected points and neighborhood at a distance d for an irregular grid.
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possible sources of spatial dependence: (i) geometric, which is caused by the fact

that nearby locations share common elements in the neighborhood defined by the

weight matrix, and (ii) true dependence that might exist between the values of

nearby locations. Fig. 1 illustrates the geometric dependence (overlap) for an ir-

regular gridded area. Three points, A, B, and C, were selected, and a circular

neighborhood of radius d was drawn around each of those points. The observations

within this distance from points A, B, and C are labeled a, b, and c, respectively.

Observations labeled with more than one letter are within the neighborhood of

multiple points. In this scenario, the greater the number of common neighbors

(overlap), the greater will be the dependence or correlation between the tests.

Therefore, procedures to account for multiplicity and spatial dependency are re-

quired to properly assess the significance of local statistics.

Traditional procedures to adjust for multiplicity

Testing multiple hypotheses is a problem encountered by scientists in diverse fields.

As Dunnett and Tamhane (1992) noted, there are at least three schools of thought

regarding the need for correcting for multiplicity. The first, called the comparison-

wise error rate approach, postulates that no correction is needed, and each test

should be assessed for significance separately. The second, known as experiment-

wise or family-wise error rate (FWER—the term family stands for the set of statistical

tests whose error rate needs to be controlled) approach, suggests that the probability

that a true null hypothesis is incorrectly rejected (called type I error in hypothesis

testing; type II error is when a false null hypothesis fails to be rejected) is controlled

at a specific significance level a. The third, Bayesian decision–theoretic approach,

evaluates type I and type II errors using assumptions about the probability distri-

bution of unknown parameters. Most recently, a fourth school of thought emerged,

as we will discuss in the next section of this article. It is similar to the experiment-

wise approach, but seeks to control the FDR, instead of the type I error (Benjamini

and Hochberg 1995).

MCPs seek to control the FWER, which can be understood as the probability

that a type I error does occur among all hypotheses being tested. Considering F as

the number of tests for which a type I error occurred, FWER is simply expressed as

FWER 5 Pr(F � 1). MCP procedures control the FWER for all n tests, at significance

level a (for a two-sided test the appropriate critical value should be evaluated at

a/2n) (Jones, Lewis, and Tukey 2001). The simplest procedure, but also most con-

servative (especially when the tests are highly correlated), is the Bonferroni method.

It evaluates the significance of the test statistics at a critical probability value

(pcritical) set equal to a/n, where a is the overall type I error rate for the data. All test

statistics whose probability values (p) satisfy the condition p � pcritical 5 a/n 5 pBON

are considered significant (null hypothesis is rejected) (Sankoh, Huque, and Dubey

1997). Different stepwise modifications to the Bonferroni method were proposed,

such as those of Holm (1979), Simes (1986), Hommel (1988), and Hochberg
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(1988). All provided more powerful results than the Bonferroni method and proved

to be more appropriate under certain distributions and correlation profiles (Ho-

mmel 1989; Brown and Russell 1997; Sankoh, Huque, and Dubey 1997).

Sidak (1967, 1968, 1971) proposed a procedure that proved to be more pow-

erful than the original Bonferroni when the test statistics are independent and uni-

formly distributed. The Sidak correction also controls for the overall probability of

type I error, but with critical values appraised at a level 1� ð1� aÞ1=n. Therefore, a

test is considered significant when p � pcritical ¼ 1� ð1� aÞ1=n.

Tukey, Ciminera, and Heyse (1985) proposed another modification that spe-

cifically accounts for high correlation among the tests. Significance is evaluated at

p � pcritical ¼ 1� ð1� aÞ1=
ffiffi
n
p

. A similar approach was suggested by Dubey and

Armitage–Parmar (Sankoh, Huque, and Dubey 1997) in which the significance of

the test statistics is evaluated at p � pcritical ¼ 1� ð1� aÞ1=wk , where wk ¼ n 1�r:kð Þ,

r:k ¼ n � 1ð Þ�1Pn
i 6¼k rik , and rik is the correlation between tests i and k. If the tests

are not correlated, the procedure is equal to the Sidak correction. Instead, if the

tests are perfectly correlated, the procedure reduces to the unadjusted comparison-

wise error rate approach. Finally, if the correlation is equal to 0.5 the procedure is

equivalent to the Tukey, Ciminera, and Heyse (1985) method.

These procedures are not an exhaustive list of all approaches ever proposed to

control the FWER. However, some lessons can be taken from these generic meth-

ods. First, the Bonferroni method is the most conservative approach in current use.

Second, if one wishes to control the FWER there is not a single best procedure that

can be used for any kind of data set, and the recommended approach will depend

on the distribution and level of correlation observed in the test statistics. Finally,

although some of the procedures described in this section do show more power

than the Bonferroni method, family-wise approaches usually produce conservative

results.

An alternative procedure to adjust for multiplicity

Instead of controlling for the probability that a true null hypothesis is incorrectly

rejected among all possible hypotheses, one may want to control the proportion of

false declarations of significance among those individual deviations from null hy-

potheses considered to be significant (FDR). This approach is particularly useful in

exploratory data analysis. Often in these situations, the main goal is to identify as

many significant cases as possible, such as testing different treatments for a disease,

evaluating multiple chemical components for drug development, and selecting

some key genes (among thousands) for further investigation during microarray ex-

periments. Similarly, in the particular case of local statistics, one wants to be able to

identify as many locations with a significant local spatial association as possible.

For example, assume that a local statistic is applied to disease data as a surveillance

tool. The main goal is to check for the presence of clusters and indicate the areas

where interventions should be immediately put into place. In this case, it is crucial
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to be able to identify as many significant clusters as possible, so that a disease

outbreak can be effectively curtailed. Another example is the use of local statistics

to identify clusters of crime in a region. Public officials interested in reducing crime

rates want to be able to identify as many potential critical areas as possible.

Benjamini and Hochberg (1995) proposed a procedure that addresses this is-

sue. Assume that there are m hypotheses to be tested. Among those, R will be de-

clared significant (null hypothesis rejected), F are false positives (null hypothesis

incorrectly rejected, or type I error), and S are the true positives (null hypothesis

correctly rejected). Moreover, consider a variable Q defined as the proportion of

null hypotheses incorrectly rejected among all those that were rejected. This var-

iable can be expressed as Q 5 F/(F1S) or Q 5 F/R, and, by definition, when R 5 0

the variable Q is set to equal zero. Benjamini and Hochberg (1995) define the FDR

as the expected value of variable Q. For independent tests it can be controlled for

each test at a level a by the following stepwise procedure: (i) order the test statistics

p-values (pi) in ascending order (p1 � p2 � . . . � pm); (ii) starting from pm find the

first pi for which pi � (i/m)a; and (iii) regard all tests as significant for which

pi � pcritical 5 (i/m)a5 pFDR. Therefore, if pcritical equals 5% it means that, on aver-

age, among the rejected null hypotheses, 5% were truly null (Storey and Tibshirani

2003). The gain in power provided by this procedure becomes larger as m increas-

es. As one would have expected, the compromise between Bonferroni critical val-

ues and unadjusted values is exemplified by the inequalities pBON � pFDR � pUNA.

Using simulated data, Williams, Jones, and Tukey (1999) concluded that the Ben-

jamini and Hochberg (1995) procedure is the best available choice to correct for

multiplicity. A similar positive view was reached for the analysis of neuroimaging

data (Genovese, Lazar, and Nichols 2002).

An adaptive procedure was also proposed to improve the control of the FDR

(also assuming that the tests are independent) (Benjamini and Hochberg 2000). The

innovative feature of this adaptive procedure is the estimation of the number of true

null hypotheses. The nonadaptive and the adaptive procedures show very similar

results for cases when the number of true null hypotheses is large. Additionally, the

issue of dependence among tests was addressed, and the Benjamini and Hochberg

(1995) procedure was shown to control the FDR when the test statistics present

positive regression dependence (Benjamini and Yekutieli 2001). A further devel-

opment, the positive FDR (PFDR) was proposed to account for the fact that an error

rate will be estimated only when at least one hypothesis is declared significant, or

PFDR 5 E[(F/R)|R40]. The main difference between this approach and the Benja-

mini and Hochberg (1995) procedure is that the rejection region determined by

Pcritical is fixed, and then the significance level a is estimated (Storey 2002). The

procedure was also shown to perform well under certain types of dependence in

the test statistics (Storey and Tibshirani 2001). Additionally, a Bayesian approach to

FDR and PFDR control was introduced by Efron and Tibshirani (2002) and Storey

(2003), respectively. Finally, Storey, Taylor, and Siegmund (2004) provide evidence

that the FDR and the PFDR are asymptotically equivalent.
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Procedures to account for spatial dependence

Most procedures proposed to adjust for multiple comparisons assume that the test

statistics are independent. The Tukey, Ciminera, and Heyse (1985) procedure, as

previously detailed, was specifically formulated for cases of multiplicity when the

tests were highly correlated. Yekutieli and Benjamini (1999) proposed a modified

procedure to control the FDR for highly correlated test statistics, although it was

proven that, in certain types of dependence, such as ergodic dependence, some

mixing distributions, and positive regression dependence, it is still possible to con-

trol the FDR (Benjamini and Yekutieli 2001; Storey and Tibshirani 2001; Storey,

Taylor, and Siegmund 2004).

In the context of local statistics, however, a more specific assessment is re-

quired. As previously highlighted, there are two sources of spatial dependence for

tests on local statistics. The true dependence between the values for various nearby

locations is expressed by the correlation structure of the local statistic. Ord and

Getis (1995) described the correlation structure of the G�i ðdÞ statistic for a regular

grid scenario. The correlation between the values of two locations can be negative

or positive, depending on the number of observations and on the number of com-

mon neighbors that the locations share. As Anselin (1995) points out, the use of

MCPs becomes too conservative as the number of tests, n, increases, as tests for

locations further apart, which share no neighbors, are independent. Considering the

statistical properties of the FDR, we do expect that this source of dependence can

be controlled, although this will not necessarily always be true. Further research is

still needed on this issue.

Regarding the geometric source of dependency (overlap), Getis and Ord (2000)

proposed a method to address this issue based on the number of seemingly inde-

pendent tests. Assume that among the n tests there are n independent spatial clus-

ters, each containing u observations perfectly correlated within the cluster, then

n 5 nu. Additionally, as in the case of dependent tests the correlation, r, can be

expressed by the overlap between nearby tests, then n5 n� r(n� 1). Therefore, if

there is perfect correlation (r 5 1) then there is only one independent spatial cluster

(n5 1). Additionally, the lower bound for the correlation r is � 1/(n� 1).

Using this rationale, Getis and Ord (2000) suggested a modification of the Si-

dak and Bonferroni procedures to account for the overlap, where the number of

tests n is replaced by the number of independent spatial tests n. Therefore, the

critical probability value for the Sidak correction is appraised at level

1� ð1� aÞ1=n, and the Bonferroni correction at level a/n. The implementation of

this strategy is straightforward, as the proportion of overlap between tests given a

certain distance can be easily assessed from the data. In fact, if the same weight

matrix is used for different LISA, then the same overlap pattern, and therefore the

same spatial dependence, is expected. Although the Getis and Ord (2000) sugges-

tion can be easily incorporated in conservative MCPs, its extension to FDR proce-

dures may result in controlling the FDR at levels above a. Further research is
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needed to address the impact of the overlap on highly dependent points (placed in

either regular or irregular grids).

An example with empirical data: malaria transmission in the Brazilian

Amazon

The main purpose of presenting this example is to emphasize the implications of

adopting extreme decisions regarding the assessment of significance. On the one

hand, the issue of multiple comparisons can be ignored and all tests that fail to

conform to the null hypothesis are accepted as significant. On the other hand, ex-

tremely conservative methods can be used to control the error rate and result in

very few significant tests. In a scenario of disease surveillance and control, the

former would imply spending a large amount of human and financial resources

unnecessarily and inefficiently, while the latter would result in a major failure to

curb the spread of the disease. As we show below, the FDR procedure is a better

and efficient alternative to those extreme decisions.

Data on malaria rates were collected in a settlement project located in the state

of Rondônia (western part of the Brazilian Amazon). The project, called Macha-

dinho, is physically divided by a river into two tracts: tract one located to the south

of the river and tract two to the north. These two tracts comprise a total of 1742

plots, which are the sections of land assigned to settlers. Additionally, protected

forest reserves are placed across the area of the project. Data collection started as

soon as settlers moved to Machadinho in 1985, with follow-up surveys carried out

in 1986, 1987, and 1995. All settlers who were effectively occupying their plots

were interviewed. That means that those plots whose owners did not clear any

forest area or did not live at least part-time in Machadinho were not included in the

survey (Sawyer 1985). Therefore, the number of observations for each year is not

the same, as shown in Table 1.

Due to a multitude of factors, detailed in Castro (2002) and Singer and Castro

(2001), the area soon became high risk for malaria (Table 1). In 1985, 65.7% of the

population had malaria at least once, and this number jumped to 90.1% in the next

year. Also in 1986, 55.9% of people had malaria episodes in more than 5 months of

the year (Sydenstricker 1992), and almost 40% of cases registered in Rondônia were

Table 1 Number of Plots and People Surveyed, Person-Months Exposed to the Disease,

Malaria Cases, and Exposure Weighted Malaria Illness Rate—Machadinho (1985/95)

Year Total number

of plots surveyed

Total number of

people surveyed

Number of

person-months

Malaria

cases

Malaria

rate (%)

1985 267 1366 4587 1041 22.69

1986 545 2736 24,938 8006 32.10

1987 740 3982 38,121 9012 23.64

1995 954 5278 59,437 3939 6.63

Controlling the False Discovery RateMarcia Caldas de Castro and Burton H. Singer
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observed in Machadinho (Sawyer and Sawyer 1987). Transmission, however, was

very focal, and in certain areas some people reportedly suffered considerably more

severely than others. Malaria risk is measured by the exposure-weighted malaria

illness rate (referred to simply as malaria rate). Its numerator records the number of

months each settler had malaria during a year, and the denominator records the

exposure time—number of person-months exposed to the disease, as shown in

Table 1 (Sawyer 1988).

We use LISA to check for the presence of clusters of high or low malaria rates in

Machadinho. For that purpose, plots were considered as the spatial unit of analysis,

and malaria rates assigned to their centroids. The definition of the neighborhood

around each plot, however, needs special attention. The spread of diseases does not

respect or follow any predefined borders. The most appropriate neighborhood of

potential exposure is a function of a dynamic process between men, mosquitoes,

and the local environment, which determines a lower or higher risk of malaria

transmission. Failure to account for this process will most likely result in neigh-

borhoods that have little use, if any, for controlling the disease. This problem is not

specific to disease studies. For example, modeling the dynamics of the lion pop-

ulation in the Serengeti National Park depends on key distances that represent the

interaction of lions and wildebeests, and considering exclusively the behavior of

lions would result in a poor model (Packer et al. 2005).

In our empirical example, the distance d that defines the neighborhood around

each plot was selected based on three factors associated with both the area and

phenomena under study. The first factor is the flying behavior of mosquitoes, which

ranges from 500 to 3000 m without the aid of the wind, and up to 5000 with the aid

of the wind (Deane 1947; Cova-Garcia 1961; Van Thiel 1962). The second factor is

the size of the plots: an average front of 400–500 m and an average depth of 700–

900 m. An extensive analysis of buffers sized between 500 and 8000 m suggests that

distances lower than 2000 m would result in a very small number of neighbors for

each plot, with a large number of them being left as ‘‘islands’’ with no neighbors

(Castro 2002). The third factor is related to the implementation of control measures

by the local health agencies, which is done by sectors. An analysis of the distri-

bution of sectors suggests that distances larger than 2000 m would be more appro-

priate (Castro 2002). Additionally, 3500 m is the minimum distance necessary to

guarantee that all plots have at least one neighbor in all 4 years.

It is important to mention that different approaches have been used to choose

the most appropriate neighborhood, such as a k-nearest neighbors method in which

the number of neighbors is fixed (Baumont, Ertur, and Le Gallo 2004); using the

average distance between nearest neighbors as a reference (Paez, Uchida, and Mi-

yamoto 2001); comparison between the number of neighbors in a first-order con-

tiguity weights matrix and a matrix defined by a certain distance d (Paez, Uchida,

and Miyamoto 2001); and evaluating the most effective distance to remove the

spatial autocorrelation from the data through the use of a filtering procedure (Getis

1995; Paez, Uchida, and Miyamoto 2001). The first three approaches are not
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appropriate for our data as information is not available for all 1742 plots. Some

plots have no contiguous neighbor, and in those cases a fixed number of neighbors

could result in a very large neighborhood with no useful meaning for purposes of

malaria transmission. The last approach would require adoption of different dis-

tances for each of the 4 years of data we have. However, to guarantee temporal

comparability of the outcomes of the dynamic process of malaria transmission we

opted to use a unique distance.

Using 3500 m as the critical distance, the proportion of overlap between each

pair of plots does not vary dramatically over time. As shown in Table 2, an overlap

of 45% was observed on average each year, despite the differences in the total

number of plots included in the data set. The associated standard deviation was

small in magnitude and roughly the same over time. The last row of Table 2 shows

the number of independent spatial clusters (n), as proposed by Getis and Ord

(2000). The difference between the total number of plots and n is directly reflected

in the critical p value to test for significance, highlighting the importance of taking

into account the spatial dependence.

The calculations of Gi(d) and G�i ðdÞ were done in Point Pattern Analysis (PPA;

Aldstadt, Chen, and Getis 1998), a program developed at San Diego State Univer-

sity (http://www.nku.edu/� longa/cgi-bin/cgi-tcl-examples/generic/ppa/ppa.cgi),

while the calculations of Moran’s Ii were performed in GeoData Analysis Software

(GeoDATM; http://sal.agecon.uiuc.edu/geoda_main.php), developed by Luc An-

selin at the University of Illinois. All calculations to assess the significance of the

local statistics were implemented in a spreadsheet, and the results are summarized

in Table 3.

Initially, a comparison-wise error rate was used, with no correction for multiple

testing. Independent of the size of the data set, the critical p value and the cutoff

(zcritical) for significance are the same for all years. Although one can say that this is

the least conservative method, it is also a procedure that necessarily will result in

false positives (type I errors), and therefore should be avoided.

Two results shown in Table 3 highlight the problems of not correcting for mul-

tiple testing. For example, no clusters of low rates were identified by the Gi(d) and

G�i ðdÞ statistics in 1985 after multiplicity was controlled, which indicates that all

Table 2 Average and Standard Deviation of the Proportion of Overlap Between G�i ðdÞ
Statistical Tests on Malaria Rates, and Number of Independent Spatial Clusters—Macha-

dinho (1985/95)

Summary statistics of overlap Year

1985 1986 1987 1995

Average 0.46572 0.44768 0.45237 0.45943

Standard deviation 0.03192 0.02748 0.02605 0.02663

Total # of locations 267 545 740 954

n 143.12 301.46 405.70 516.16

Controlling the False Discovery RateMarcia Caldas de Castro and Burton H. Singer
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those identified by the unadjusted procedure are false positives. Next, the original

formulations of Bonferroni, Sidak, and FDR control procedures for accounting for

multiple testing were applied. Bonferroni and Sidak led to very similar critical val-

ues, resulting in a comparable number of plots considered as significant for clus-

tering of malaria rates, as shown in Fig. 2. The Benjamini and Hochberg (1995)

procedure of controlling the FDR revealed more significant plots for clustering, as

expected. Also, this effect becomes larger as the size of the data set increases, cor-

roborating the fact that the larger the data set, the more the conventional MCPs are

conservative, and the more powerful is the FDR approach.

Taking G�i ðdÞ as an example, the FDR pcritical values shown in Table 3 reveal

that among the plots that were considered significant for clustering, 0.05%, 0.65%,

1.00%, and 1.01%, on average, are truly nonsignificant in 1985, 1986, 1987, and

1995, respectively. That error is acceptable for the purposes of disease surveillance

in the present context. Additionally, the improvement provided by the FDR ap-

proach is captured by the recovery ratio (RR) (Williams, Jones, and Tukey 1999),

which expresses the gain in the number of significant tests obtained by the FDR

procedure when one moves from Bonferroni (the most conservative method) to the

unadjusted approach. Table 3 shows the RR calculated for the procedures that

correct for multiplicity. The ratio shows an increasing trend over the years due to

the larger number of observations, and the gains are similar among the different

local statistics computed for the same year. As an example, controlling the FDR for

the Moran’s Ii in 1985 increased the number of significant plots by 87% from the

most conservative method.
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Figure 2. Percentage of plots that tested significant for clustering, according to the G�i ðdÞ
statistic and different control procedures—Machadinho (1985/95).
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The Bonferroni and Sidak methods were also applied with the correction for

spatial dependence (overlap) proposed by Getis and Ord (2000). There is a slight

gain in adjusting for both multiplicity and spatial dependence, as shown in Fig. 2

and Table 3. However, two issues need to be raised. First, correcting conservative

MCPs for spatial dependence does not lead to results with the same power as those

provided by the FDR procedure. Second, it is important to investigate if the addi-

tional plots that tested significant for a clustering pattern in this empirical example

can be justified on the basis of the characteristics observed in the plots. It is not the

purpose of this article to offer an exhaustive interpretation of each identified cluster,

but some examples are detailed to illustrate the importance of properly assessing

the significance of LISA .

All LISA applied to malaria rates in 1995 indicate no significant cluster of low

rates when the Bonferroni approach is applied. However, when we control for the

FDR, large clusters of low rates are observed in tract two, and their locations con-

form to prior expectations. For example, one cluster was identified in an area of

intense and often successful agricultural production. Settlers occupying plots in that

area have, among other characteristics better economic conditions, which facilitate

the adoption of adequate health care, and the construction of good quality houses

that provide adequate protection against mosquitoes. Intense agricultural produc-

tion in the area does not leave the soil exposed, which decreases the number of

potential mosquito breeding sites. Several plots in the area had only one owner

during the 10-year period analyzed. This characterizes a stable area, where the

population had prolonged exposure and, most likely, have developed acquired

immunity against malaria.

Also in 1995, an important cluster of high malaria rates was not identified by

the most conservative approaches. It is an area that registered remarkably high rates

of malaria, mainly as a result of illegal deforestation that cleared, in less than 14

months, approximately 33.5 km2 of forest in the vicinity of the area. The environ-

mental transformations (such as slashing and burning trees, and leaving the bare

soil exposed for a long period of time) contributed to an increase in the number of

breeding sites. The scenario was aggravated by the fact that the labor force hired to

work on the deforestation effort came from a very malarious region, resulting in

ideal conditions for an intense malaria transmission (a reservoir of infected peo-

ple—the hired labor force, a reservoir of people who could become infected—the

settlers living in the plots close to the deforested area, and a large number of disease

vectors—the mosquitoes).

A comprehensive analysis of the results for all 4 years show that important

clusters of low and high malaria rates, such as those described above, were not

detected by conservative control procedures, such as Bonferroni and Sidak. How-

ever, the use of the FDR resulted in a more comprehensive and defensible picture of

malaria transmission in the particular area analyzed in this article.

Finally, although in this article we concentrate on the FDR approach proposed

by Benjamini and Hochberg (1995), we tested the potential gains of using an
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adaptive FDR procedure (Benjamini and Hochberg 2000). All calculations were

performed using a routine written for S-Pluss program and available for download

at http://www.math.tau.ac.il/%7Eroee/FDR_Downloads2.htm. In 1985 no further

improvement was obtained by the adaptive procedure (it resulted in the same

pcritical value obtained for nonadaptive FDR). For the remaining years, however, the

adaptive FDR approach identifies a larger number of significant plots, and the gains

increase with the size of the data set. Considering the tests of the G�i ðdÞ statistic, the

adaptive FDR identifies 32, 46, and 89 additional plots as significant in 1986, 1987,

and 1995, respectively.

An example with simulated data: 50 � 50 grid sampled from a N(4,1)

Although the empirical example highlighted the costs of not accounting for mul-

tiple testing or of using highly conservative approaches, the true distribution of the

data is unknown, and we cannot affirm with absolute confidence how many clus-

ters were missed. Understanding the performance of local measures of spatial as-

sociation, linked to multiple comparison methodology, requires a range of

simulation studies. Ideally, we would like the simulated spatial patterns to, in

some sense, be representative of what is observed across a diversity of scientific

disciplines. They would include complex forms of spatial dependence, as it appears

empirically in domains such as polymer chemistry, soil science, population genet-

ics, and epidemiology of infectious diseases, to name only a few contexts. At the

present time, a catalogue of simulation algorithms that could purport to represent

this broad array of subject matter does not exist.

In the present article we simulate a diversity of cluster sizes, shapes, and lo-

cations that have the same features as malaria risk zones in rural settings of many

endemic countries in Asia, Africa, and Latin America. The simulated arrangements

are designed to challenge the G�i ðdÞ statistic and the FDR methodology in terms of

their capacity to identify/discover actual clusters. A more elaborate comparative

study across varieties of spatial arrangements from many fields would require clear

delineation of the catalogue indicated in the above paragraph. Further, a rigorous

mathematical understanding of the performance of G�i ðdÞ and FDR-based adjust-

ments for multiple comparisons at the level of complex spatial dependencies in-

cluded in the present simulations—and certainly in the more broad-based study we

would all like to see—lies in the future.

Independent samples from a normal distribution with mean 4 and standard

deviation 1—N(4,1)—were simulated and placed in a regular 50 � 50 grid. The

size of the grid guarantees a big enough sample, while the mean and standard de-

viation produce only positive values (imitating a real-life experiment that records

disease rates). We specified a significance level of 5% and defined extreme low

values to be all points located below the 2.5th percentile. Extreme high values

consisted of those points above the 97.5th percentile of the distribution. As sim-

ulating truly local patterns is not a trivial exercise, we rearranged the pixels in the
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grid to create different and irregular clustering patterns of extreme values. The sce-

narios are shown in Fig. 3. Scenario (i) is the original data sampled from N(4,1),

with extreme values randomly arranged in the 50 � 50 grid. Scenario (ii) is a subtle

alteration of the original N(4,1) data in which a few pixels with extreme values

were rearranged to produce four small clusters. Scenario (iii) is a more extensive

rearrangement of the extreme values yielding seven compact clusters (four large

and three small). Finally, scenario (iv) is a further modification of the previous sce-

nario giving seven clusters of varied shape (compact and elongated) and size.

It is important to mention that as all LISA here addressed are expressed as nor-

mal variates, the results of this simulation can be generalized to all indicators. For

the purpose of presenting the results, we chose to apply the G�i ðdÞ statistic to each

scenario using distances equal to 2, 3, 5, and 8 units. Two remarks must be made at

this point. First, any local indicator of spatial association could have been chosen,

as for the purposes of the simulation what matters is the choice of the type of error

rate control, not the indicator. Second, there is no real-life underlying process that

could guide the researcher on the best distance d to use in this simulated grid.

Unless all clusters had the same size and shape (which would have no application

to real-life experiments), the choice of the critical distance faces the same chal-

lenges previously described.

The significance of the tests was assessed at a 5% level, considering no correc-

tion for multiple testing, and five different control procedures: Bonferroni, Bonferroni

accounting for spatial dependence (with n), Sidak, Sidak accounting for spatial de-

pendence (with n), and FDR. As Bonferroni and Sidak led to very similar outcomes,

we only report the results for the former. It is expected that the G�i ðdÞ statistic will

identify the clusters enforced in scenarios (ii)–(iv). Moreover, it is expected that pixels

with nonextreme values, located outside a buffer zone of size d placed around the

enforced clusters, will not test significant for a clustering pattern. Finally, we do not

expect any significant clustering pattern to be identified in scenario (i).

In fact, when applied to scenario (i), the G�i ðdÞ statistic only reveals significant

pixels if a cutoff unadjusted for multiple testing is used (zcritical 5 1.96). When any

correction for multiple comparisons is adopted, none of the 2500 statistics are sig-

(i) (ii) (iii) (iv)

Figure 3. Simulated scenarios based on a normal distribution with mean 4 and standard

deviation 1�N(4,1). Black pixels represent extreme high values (above the 97.5th percentile

of the distribution), while gray pixels indicate extreme low values (below the 2.5th percentile

of the distribution).
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nificant. This result emphasizes the importance of accounting for multiple com-

parisons, as highlighted previously in the analysis of the empirical data. Although

one does not want to miss real clusters, one does not want to identify false clusters

either. Therefore, when local measures of spatial association are used, the issue of

multiple testing must be considered. We provide some guidance on this issue using

the simulated data.

Figs. 4–6 show some results for the modified scenarios. For ease of visualiza-

tion, buffers of size d are shown around the enforced clusters. A black ‘‘1’’ indi-

cates extreme high values of the simulated N(4,1) distribution that were not

identified as significant for a clustering pattern, while a black ‘‘D’’ shows the lo-

cation of extreme low values not identified as significant. Black pixels represent

pixels that tested significant for a local cluster of high values, while gray pixels

indicate those that tested significant for a local cluster of low values.

Fig. 4 shows the results for scenario (ii) using a distance equal to 2 and ad-

dressing multiple testing by the use of Bonferroni and FDR, respectively in grids (a)

and (c). In the case of Bonferroni we also correct for spatial dependence (overlap)

using n (Getis and Ord 2000), shown in grid (b). The Bonferroni correction results in

the identification of 45% of the pixels with extreme values clustered purposely,

increasing to 49% when accounting for spatial dependence. The FDR approach

increases this number to 81%, proving to be a more powerful procedure. None of

the extreme values that were not rearranged into new clusters tested as significant,

unless an unadjusted cutoff of 1.96 is used.

Fig. 5 shows results for scenario (iii). Grids (a) and (b) use a distance equal to 2,

correcting for multiple testing using Bonferroni and FDR, respectively. The advan-

tage in using FDR is considerable, especially for the small-enforced clusters. While

the FDR approach identifies 95% and 65% of the extreme values placed in large

and small clusters, respectively, the Bonferroni approach captures only 78% and

10% of those pixels, and two of the small-enforced clusters would be completely

missed. Increasing the distance to 3 improves the identification of the large clusters,

but aggravates the problem of the small clusters, as shown in grids (c) and (d),

which indicates how critical the choice of d is especially when the clustering pat-

tern is irregular, as one would expect to find in real-life experiments. Without cor-

recting for spatial dependence, the Bonferroni approach identifies 88% of the

extreme values constituting large enforced clusters, but misses all the small clusters.

Adopting FDR changes these numbers to 97% and 40%. Correcting for spatial de-

pendence resulted in a slight improve in Bonferroni (90% match of the extreme

values in large clusters, but still none in the smaller ones).

Finally, Fig. 6 shows the application of the FDR approach for scenario (iv),

using distances equal to 2, 3, and 8. As distance increases, all the pixels comprising

the compact clusters are likely to be identified as significant. The elongated clus-

ters, however, are much harder to identify. Increasing the distance, in fact, only

adds pixels located inside the buffer zone, but does not improve the matching of

clustered extreme values. For d 5 2, 86% of the extreme values constituting the
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clusters were identified as significant, while for d 5 3 and 8 this number decreases

to 76% and 74%, respectively.

These findings can be summarized by a characterization of the clusters iden-

tified under the different combinations of scenarios and MCP approaches. Consider

that a true cluster is fully identified when all pixels that comprise an enforced

cluster have a significant G�i ðdÞ. Similarly, it is characterized as partially identified

when only some of the pixels that encompass an enforced cluster had a significant

G�i ðdÞ. If none of the pixels had a significant G�i ðdÞ then the enforced cluster is

classified as missed. Finally, false clusters are defined by a group of five or more

pixels, located outside a buffer zone of size d placed around the enforced clusters,

which had significant G�i ðdÞ. This characterization is shown in Fig. 7 for all

modified scenarios, assuming d 5 3 for scenario (ii), and d 5 2 for scenarios (iii)

and (iv). Each ring of the graphs shows the proportion of types of clusters among all

those that tested significant.

The unadjusted approach stands out as the extreme alternative. On the one

hand, it fully identifies real clusters in larger numbers than any other procedure. On

the other hand, it invariably reveals a significant number of false clusters. This

trade-off can come at a higher cost for particular applications, for example, public

health. Considering the approaches that address multiple testing, the FDR method

is the only one able to fully identify real clusters. Bonferroni never does this. The

Bonferroni approach is also the only one that misses real clusters, which never hap-

pens with FDR. These facts constitute a strong argument in favor of the FDR method

as a much more powerful procedure than conservative MCPs, such as Bonferroni.

Regarding the need to account for spatial dependence, the answer is not so

straightforward. Considering that the three modified scenarios are analyzed for four

different distances and two MCP approaches, Bonferroni and FDR (the former ap-

plied with and without correcting for spatial dependence), we obtain 36 different

results. Out of these, three did not show any improvement in the number of extreme

values identified as significant for a clustering pattern when a correction for spatial

(a) (b) (c)

Figure 4. Results of the G�i ðdÞ statistic applied to modified scenario (ii) at distance d 5 2: (a)

Bonferroni, (b) Bonferroni with n, and (c) false discovery rate.
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dependence was included (Fig. 7a and c). Also, in two cases the number of clusters

missed decreased, one of them is exposed in Fig. 7b.

While the choice of using n, and therefore accounting for the geometric source of

spatial dependence, stands out as a reasonable strategy, it appears that at least two

additional issues, which are beyond the scope of this article, must also be addressed to

facilitate a clear understanding of the problem. First, we require more extensive guid-

ance on the specification of a critical distance tuned to the idiosyncrasies of a given

spatial arrangement. Second, we require more nuanced understanding of how well

noncompact clusters can be identified. Further research is needed on both points.

Conclusion

In light of the empirical example presented in this article, the failure to identify

local spatial clusters may have multiple implications. First, local statistics of spatial

association can be used as a surveillance tool for monitoring and control of dis-

(a) (b)

(c) (d)

Figure 5. Results of the G�i ðdÞ statistic applied to modified scenario (iii): (a) using d 5 2 and

Bonferroni, (b) using d 5 2 and false discovery rate (FDR), (c) using d 5 3 and Bonferroni, and

(d) using d 5 3 and FDR.
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eases. Not being able to identify as many true clusters as possible may result in

ineffective control, and identifying too many false positives may increase the hu-

man and financial resources required to avoid an epidemic. Second, local statistics

of spatial association can be used as an initial exploratory analytic tool, so that

critical areas can be identified for further investigation in order to shed some light

on what might be the major determinants of either low or high risk of disease

transmission. If only a restricted number of locations are declared significant for a

clustering pattern because of an overly conservative multiple comparison proce-

dure, important relationships may not come to the attention of scientists and policy

makers. Third, if the evaluation is being done in a newly opened settlement area in

order to guide the occupation process (so that malarious areas could be avoided

until major risk factors are mitigated), then failing to identify critical areas would

potentially contribute to malaria outbreaks. These issues are not restricted to health

(a) Scenario (ii), d=3 (b) Scenario (iii), d=2 (c) Scenario (iv), d=2

Clusters fully identified Clusters partially identified

Clusters missed False clusters identified

Figure 7. Characterization of clusters identified at distance d by different multiple compar-

ison approaches in the modified scenarios (ii), (iii), and (iv).

(a) (b) (c)

Figure 6. Results of the G�i ðdÞ statistic applied to modified scenario (iv): (a) using d 5 2 and

false discovery rate (FDR), (b) using d 5 3 and FDR, and (c) using d 5 8 and FDR.
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applications. The same rationale is valid for any application of local statistics of

spatial association. Overall, the goal is to find areas that show significant spatial

patterns, and then investigate how these patterns affect the phenomena under

study.

The assessment of significance of local statistics of spatial association must

consider the problems of multiple comparison and spatial dependence. Currently,

this has been addressed using a conservative approach such as the methods of

Bonferroni and Sidak. In this article we propose the use of a more powerful pro-

cedure, which controls for the FDR (Benjamini and Hochberg 1995). Using em-

pirical and simulated data, we tested different procedures that account for

multiplicity in order to enhance the performance of statistics of spatial association.

Most conservative MCP methods fail to identify clusters of both high and low val-

ues, while the FDR procedure provides a considerable improvement in the analysis.

Additionally, we tested the conservative MCP approaches with a correction for

spatial dependence (overlap), as proposed by Getis and Ord (2000). Although the

results improved, they were still conservative and less powerful than those obtained

by controlling the FDR.

The above-mentioned empirical and simulated studies are obviously but two

instances of many alternative data sets that we might investigate. Thus, the question

arises as to whether or not there is a rigorous general mathematical underpinning to

the FDR-based methods that supports the kinds of spatial applications frequently

arising in geography. At the present time, the answer to this question is negative.

The principal obstacle to a full mathematical understanding of the FDR derives

from the complex patterns of spatial dependence that are omnipresent in geo-

graphical analyses. A rigorous treatment of the FDR for specific forms of depend-

ence among tests has been previously assessed (Yekutieli and Benjamini 1999;

Benjamini and Yekutieli 2001). However, this is not sufficiently general to handle

many problems in geography. For example, how would the test perform in a hy-

pothetical case of extremely high spatial dependence among points distributed in

an irregular grid?

A broad-based comparative study of new estimation methods in a one-

dimensional problem that is far simpler than what we are contemplating is

exemplified by the Princeton Monte Carlo study of robust estimators of location

(Andrews et al. 1972). Polymer chemistry is another area where two- and three-

dimensional spatial arrangements have been simulated and tested (Fixman

1978; Nelson, Rutledge, and Hatton 1997; Doi 2003). However, this is a partic-

ular topic supported by a rich physical theory underlying the construction of

spatial arrangements. Analogous theories do not exist in the epidemiology of in-

fectious diseases, linked to local ecologies. But, this is the context of our investi-

gation. Our included simulation study lends support for the G�i ðdÞ—FDR

methodology as far as we can presently carry it. We hope that others will pursue

this line of inquiry in much greater generality and with accompanying rigorous

mathematical theory.
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It is useful to point out that there is frequently a substantial time lag between the

introduction and simulation-based testing of new statistical methods and the de-

velopment of a full mathematical theory that underlies the methodology. A good

case in point is the 31-year lag between the introduction of the Tukey–Kramer’s

procedure (1953–1956) for simultaneous confidence intervals in multiple compar-

isons with unequal sample sizes and the provision of a rigorous mathematical basis

for it by Hayter (1984). See Benjamini and Braun (2002) for a fascinating account of

this history.

Finally, we recommend that currently available software incorporate an option

to address multiple comparisons. Until recently, calculation of LISA was restricted

to specific routines, ArcView scripts, and programs such as PPA and GeoDA (the

latter two described earlier). The recent incorporation of Spatial Statistical Tools in

ESRIs ArcMapTM version 9.0, however, will lead to a dramatic increase in the

number of researchers that use local statistics. Considering that some of these users

may not be fully aware of the multiplicity problem, the benefits of making these

tools available to a large number of users may be overcome by the proliferation of

misleading conclusions regarding spatial patterns in analyzed data.
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