
Ontologies
with Python

Programming OWL 2.0 Ontologies
with Python and Owlready2
—
Lamy Jean-Baptiste

Ontologies with
Python

Programming OWL 2.0
Ontologies with Python

and Owlready2

Lamy Jean-Baptiste

Ontologies with Python

ISBN-13 (pbk): 978-1-4842-6551-2		 ISBN-13 (electronic): 978-1-4842-6552-9
https://doi.org/10.1007/978-1-4842-6552-9

Copyright © 2021 by Lamy Jean-Baptiste

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6551-2.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Lamy Jean-Baptiste
Université Sorbonne Paris Nord, LIMICS, Sorbonne Université,
INSERM, UMR 1142, Bobigny, France

https://doi.org/10.1007/978-1-4842-6552-9

iii

About the Author��xiii

About the Technical Reviewers���xv

Acknowledgments���xvii

Table of Contents

Chapter 1: �Introduction���1

1.1 Who is this book for?���2

1.2 Why ontologies?���2

1.3 Why Python?��4

1.4 Why Owlready?��5

1.5 Book outline���7

1.6 Summary���8

Chapter 2: �The Python language: Adopt a snake!����������������������������������9

2.1 Installing Python��10

2.2 Starting Python��10

2.3 Syntax��13

2.3.1 Comments���13

2.3.2 Writing on screen��14

2.3.3 Help���14

2.3.4 Variables��14

2.3.5 Indentation��15

iv

2.4 Main datatypes��16

2.4.1 Integer (int) and floating-point numbers (float)��������������������������������16

2.4.2 Booleans (bool)��18

2.4.3 Character strings (str)���18

2.4.4 Lists (list)���21

2.4.5 Tuples (tuple)���22

2.4.6 Dictionaries (dict and defaultdict)���23

2.4.7 Sets (set)��26

2.4.8 Files (open)���26

2.4.9 Conversion between datatypes���27

2.5 Conditions (if)���28

2.6 Loops (for)��30

2.7 Generators���34

2.8 Functions (def)��34

2.9 Classes (class)���36

2.9.1 Classes and instances���36

2.9.2 Inheritance��39

2.9.3 Special method names��41

2.9.4 Functions and operators for object-oriented programming������������������42

2.10 Python modules���44

2.10.1 Importing a module���44

2.10.2 Installing additional modules��45

2.11 Installing Owlready2�� �45

2.11.1 Installing Owlready2 from terminal���46

2.11.2 Installing Owlready2 from IDLE or Spyder (or any Python shell)���������46

2.11.3 Manual installation of Owlready2�� �47

2.12 Summary���48

Table of Contents

v

Chapter 3: �OWL ontologies��49

3.1 An ontology… what does it look like?���50

3.2 Creating ontologies manually with the Protégé editor�����������������������������������52

3.3 Example: An ontology of bacteria���53

3.4 Creating a new ontology��56

3.4.1 Classes��58

3.4.2 Disjoints���58

3.4.3 Partitions���61

3.4.4 Data properties��62

3.4.5 Object properties���64

3.4.6 Restrictions���67

3.4.7 Union, intersection, and complement��71

3.4.8 Definitions (equivalent-to relations)��72

3.4.9 Individuals���74

3.4.10 Other constructs��76

3.5 Automatic reasoning��77

3.6 Modeling exercises��80

3.7 Summary���82

Chapter 4: �Accessing ontologies in Python���83

4.1 Importing Owlready��83

4.2 Loading an ontology���83

4.3 Imported ontologies���86

4.4 Listing the content of the ontology��86

4.5 Accessing entities��88

4.5.1 Individuals���89

4.5.2 Relations��90

4.5.3 Classes��94

Table of Contents

vi

4.5.4 Existential restrictions���96

4.5.5 Properties��96

4.6 Searching for entities���98

4.7 Huge ontologies and disk cache��101

4.8 Namespaces��102

4.9 Modifying entity rendering as text���103

4.10 Local directory of ontologies��105

4.11 Reloading an ontology in the quadstore��106

4.12 Example: creating a dynamic website from an ontology���������������������������107

4.13 Summary���112

Chapter 5: �Creating and modifying ontologies in Python������������������113

5.1 Creating an empty ontology���113

5.2 Creating classes���114

5.2.1 Creating classes dynamically��116

5.3 Creating properties��117

5.4 Creating individuals���118

5.5 Modifying entities: relations and existential restrictions�����������������������������120

5.6 Creating entities within a namespace���121

5.7 Renaming entities (refactoring)���122

5.8 Multiple definitions and forward declarations���123

5.9 Destroying entities���124

5.10 Destroying an ontology��124

5.11 Saving an ontology���124

5.12 Importing ontologies��125

5.13 Synchronization���125

Table of Contents

vii

5.14 Example: populating an ontology from a CSV file��������������������������������������126

5.14.1 Populating with individuals���127

5.14.2 Populating with classes���130

5.15 Summary���133

Chapter 6: �Constructs, restrictions, and class properties�����������������135

6.1 Creating constructs��135

6.2 Accessing construct parameters���138

6.3 Restrictions as class properties���140

6.4 Defined classes��146

6.5 Example: creating the ontology of bacteria in Python����������������������������������147

6.6 Example: populating an ontology with defined classes�������������������������������150

6.6.1 Populating using class properties���151

6.6.2 Populating using constructs��153

6.7 Summary���156

Chapter 7: �Automatic reasoning��157

7.1 Disjoints���157

7.2 Reasoning with the Open-World assumption���158

7.3 Reasoning in a closed world or in a local closed world�������������������������������160

7.4 Inconsistent classes and inconsistent ontologies��163

7.5 Restriction and reasoning on numbers and strings�������������������������������������165

7.6 SWRL rules���169

7.6.1 SWRL syntax��170

7.6.2 SWRL rules with Protégé���173

7.6.3 SWRL rules with Owlready��174

7.6.4 Advantages and limits of SWRL rules��178

7.7 Example: an ontology-based decision support system��������������������������������179

7.8 Summary���185

Table of Contents

viii

Chapter 8: �Annotations, multilingual texts, and full-text search�������187

8.1 Annotating entities���187

8.2 Multilingual texts���189

8.3 Annotating constructs��190

8.4 Annotating properties and relations���190

8.5 Creating new annotation classes���191

8.6 Ontology metadata���191

8.7 Full-text search��192

8.8 Example: Using DBpedia in Python��194

8.8.1 Loading DBpedia���195

8.8.2 A search engine for DBpedia���202

8.9 Summary���205

Chapter 9: Using medical terminologies with
PyMedTermino and UMLS��207

9.1 UMLS��207

9.2 Importing terminologies from UMLS��208

9.3 Loading terminologies after initial importation��210

9.4 Using ICD10�� �210

9.5 Using SNOMED CT��217

9.6 Using UMLS unified concepts (CUI)��222

9.7 Mapping between terminologies���223

9.8 Manipulating sets of concepts���225

9.9 Importing all terminologies in UMLS��230

9.10 Example: Linking the ontology of bacteria with UMLS�������������������������������231

9.11 Example: A multi-terminology browser��233

9.12 Summary���239

Table of Contents

ix

Chapter 10: �Mixing Python and OWL���241

10.1 Adding Python methods to OWL classes��241

10.2 Associating a Python module to an ontology���243

10.2.1 Manual import���244

10.2.2 Automatic import���245

10.3 Polymorphism with type inference��246

10.4 Introspection��247

10.5 Reading restrictions backward��250

10.6 Example: Using Gene Ontology and managing “part-of” relations������������251

10.7 Example: A “dating site” for proteins���255

10.8 Summary���264

Chapter 11: �Working with RDF triples and worlds����������������������������265

11.1 RDF triples���265

11.2 Manipulating RDF triples with RDFlib��267

11.2.1 Reading RDF triples���267

11.2.2 Creating new RDF triples with RDFlib���269

11.2.3 Removing RDF triples with RDFlib���271

11.3 Performing SPARQL requests���271

11.3.1 Searching with SPARQL���272

11.3.2 SPARQL prefixes��274

11.3.3 Creating RDF triples with SPARQL���275

11.3.4 Removing RDF triples with SPARQL��276

11.4 Accessing RDF triples with Owlready��277

11.5 Interrogating the SQLite3 database directly��283

11.6 Adding support for custom datatypes��285

11.7 Creating several isolated worlds��287

11.8 Summary���289

Table of Contents

x

�Appendix A: Description logics��291

�Appendix B: Notations for formal ontologies�������������������������������������295

�Appendix C: Reference manual��303

�C.1 World class���303

�C.2 Ontology class���307

�C.3 Classes (ThingClass class)���311

�C.4 Individuals (Thing class)���315

�C.5 Properties (PropertyClass class and its descendants)����������������������������317

�C.6 Constructs (Contruct class and its descendants)�������������������������������������322

�C.6.1 Restriction class��322

�C.6.2 Intersection (And class)���323

�C.6.3 Union (Or class)���323

�C.6.4 Complement (Not class)���323

�C.6.5 Property inverse (Inverse class)���323

�C.6.6 Individual set (OneOf class)��323

�C.7 SWRL rules���324

�C.7.1 Variable class��324

�C.7.2 Rules (Imp class)���324

�C.7.3 Class assertion atom (ClassAtom class)��325

�C.7.4 Datatype assertion atom (DataRangeAtom class)������������������������������326

�C.7.5 Object property value atom (IndividualPropertyAtom class)�������326

�C.7.6 Data property value atom (DatavaluedPropertyAtom class)����������327

�C.7.7 Same individual atom (SameIndividualAtom class)������������������������327

�C.7.8 Distinct individual atom (DifferentIndividualAtom class)����������328

�C.7.9 Built-in function atom (BuiltinAtom class)��������������������������������������328

Table of Contents

xi

�C.8 PyMedTermino2���329

�C.8.1 Terminology class��329

�C.8.2 Concept in a terminology��330

�C.8.3 Set of concepts (Concepts class)��332

�C.9 Global functions���336

Index��339

Table of Contents

xiii

About the Author

Lamy Jean-Baptiste is a senior lecturer

at Sorbonne Paris Nord University and a

member of the LIMICS, a research lab focused

on biomedical informatics. He is also the

developer of the Owlready2 Python module

that allows access to OWL ontologies. He has

developed many research prototypes, and one

of them (VCM iconic medical language) has

been patented in the United States, with three

licenses sold to industrial partners.

Jean-Baptiste speaks regularly at artificial intelligence and medical

informatics conferences, has written over 50 journal papers, and is a

moderator on the Owlready forum on Nabbles. He was awarded the best

paper award at MEDINFO 2019, the largest international conference in

medical informatics.

xv

About the Technical Reviewers

Tee Diang is a software engineer with a strong

background in Python and Java. She studied

computer science with a focus on artificial

intelligence, game development, and system

engineering—from CPUs and the Internet

itself to Python’s rich history of libraries and

standards to DevOps cloud infrastructure. Her

most recent projects exemplify her ability to

captivate users with her work. 

Jeff grew up in the San Francisco Bay Area,

surrounded by the burgeoning technology

scene. Jeff has 10 years of experience working

on development. He currently works at Apple.

Jeff writes clean, consistent code. Outside of

the work, he enjoys working on open source

projects like broaden.io to help people to

broaden their skills, broaden their education,

and broaden their knowledge.  

xvii

Acknowledgments

I would like to thank Moushin Gaouar, Appoh Kouame, and Adrien

Basse for being among the first to test Owlready, as well as my friends

and/or colleagues Rosy Tsopra, Gaoussou Camara, Antoine Gellman,

Patricia Nadjar, Antoine Saab, David Perlmutter, Arnaud Rosier, Karima

Sedki, Fadi Badra, Jordon Ritchie, Brandon Welch, Lina Soualmia, and

Marie-Christine Jaulent for discussions on ontologies, long or short, and

sometimes even before the existence of Owlready.

I also thank the ANSM (Agence Nationale de Sécurité du Médicament

et des produits de santé, French drug agency) for having funded the

VIIIP project (Integrated Visualization of Information on Therapeutic

Innovation), during which Owlready was born (at the time under the name

“Ontopy”).

Finally, I thank all members of the Owlready forum on Nabble

(http://owlready.8326.n8.nabble.com/) for their requests and their

advice, which greatly influenced the content of this book.

http://owlready.8326.n8.nabble.com/

1© Lamy Jean-Baptiste 2021
L. Jean-Baptiste, Ontologies with Python, https://doi.org/10.1007/978-1-4842-6552-9_1

CHAPTER 1

Introduction
For the past ten years, formal ontologies have become widely used in

computer science to structure data and knowledge. In parallel, the

Python programming language has become more and more widespread

in teaching, business, and research. However, until recently, there were

very few tools and resources dedicated to the use of ontologies in Python.

In fact, most books or tutorials on ontologies are quite theoretical and

do not address programming, or they are limited to more complex

languages like Java.

This problem is particularly important in the biomedical field, where

ontologies and Python are widely used. Too often, in my daily life as a

teacher and researcher in medical informatics at Sorbonne Paris Nord

University, I have seen students and engineers build ontologies that have

subsequently not been used. The files remained on a USB key, because it

was not easy to integrate ontologies with existing software.

This book exists to fill this gap. It shows how to use Python to easily

access ontologies and publish them as dynamic websites, to build

new ontologies, perform automatic reasoning, link entities to medical

terminologies, or do some research in DBpedia… using Owlready, a

Python module I develop since 2013 for “ontology-oriented programming”.

And, in this book, we will not be afraid to implement ontology-based

programs: you will see more source codes than mathematical formulas!

https://doi.org/10.1007/978-1-4842-6552-9_1#DOI

2

1.1  �Who is this book for?
This book is for anyone who wants to manipulate and build ontologies

in Python, or to discover the world of ontologies from a practical point

of view, and especially for computer scientists and semantic web

application developers, bioinformaticians, scientists in the field of

artificial intelligence, students in these disciplines… or simply for the

curious!

To read this book, it is recommended to know about object-oriented

programming, in Python or in another object-oriented language (Java,

C++, etc.). On the other hand, it is not necessary to know the Python

language or to master formal ontologies, Chapters 2 and 3 containing

reminders.

1.2  �Why ontologies?
The concept of ontology comes from the philosophy and works of Plato. In

computer science, an ontology is “a formal description of all the entities of

a domain and the relations existing between these entities”. This definition

may seem complicated! It is in fact to describe knowledge in such a way

that it can be exploited by a machine, and with a concern for completeness

and “universality”. Ontologies are part of the so-called “symbolic” artificial

intelligence, which consists of structuring knowledge to make it accessible

to a computer, as opposed to machine learning (such as neural networks,

deep learning, etc.).

The following figure shows a very simple example of ontology in the

field of ecology, represented diagrammatically (NB: “Pike” and “Roach” are

two fish species):

Chapter 1 Introduction

3

Here, we have eight entities, represented in the rectangles, and

relationships between these entities. Several categories of relationship

are present:

•	 Hierarchical “is-a” relations: They link an entity to

a more general entity. For example, a human is an

animal, pike is an animal, PCB is a pollutant, and so on.

In programming, the term “inheritance” is also used to

name these relationships.

•	 Geographical relationships (“lives”, “present in”): They

indicate the location of an entity, linking an entity to a

place. For example, pike are located in lakes.

•	 Various transversal relationships (“eat”, “concentrate

in”): For example, the human eats pike.

By consulting this diagram, you will easily deduce that a human is

likely to be intoxicated by PCB. The advantage of an ontology is to make

this reasoning accessible not only to humans but also to machines:

with the help of a software called reasoner, a computer will be able

to reproduce this reasoning and to deduce that humans risk to be

intoxicated by the PCB.

Chapter 1 Introduction

4

For this, ontologies rely on description logics (see Appendix A). The

OWL language (Web Ontology Language, standardized by the W3C, World

Wide Web Consortium) is one of the most used to formalize ontologies.

OWL supports a large number of different description logics. The OWL

language can be translated into RDF (Resource Description Framework),

itself usually expressed in XML (Extensible Markup Language).

Ontologies have two main purposes:

•	 Automatic reasoning: Since the set of concepts,

relations, and their properties is described in a formal

way, it becomes possible to automatically perform

logical inferences.

•	 Reuse of knowledge: All ontologies share the same

namespace and can be linked together, leading to the

semantic web.

In addition, there are many tools designed for ontologies, such as

the Protégé editor or the HermiT and Pellet reasoners. Working with

ontologies allows you to use all of these tools, although for a given project

you may not need the full potential of ontologies.

1.3  �Why Python?
The programming language most often used to handle ontologies is Java.

However, Java is a complex language and, moreover, it is little used in some

areas, such as the biomedical field.

On the contrary, the language that rises today is Python, especially in

the biomedical field (indeed, several examples of this book will be from

biology or medicine). Compared to other programming languages, the

main advantage of Python is that it optimizes the programmer’s time:

Python allows the programmer to develop his/her program faster than

Chapter 1 Introduction

5

with most other languages. More than 15 years ago, that’s what convinced

me to choose Python, when I realized that I needed only one day to

perform in Python a task that would have required three days in Java!

Nowadays, Python is very often used as a glue to link other

components, such as databases, websites, text files… or ontologies, as we

will see in this book.

1.4  �Why Owlready?
Owlready allows “ontology-oriented programming”, that is, object-oriented

programming in which objects and classes are the entities of an ontology.

Ontology-oriented programming is an approach that is both simpler

and more powerful than the usual Application Programming Interface

(API) in Java, as proposed by OWLAPI and JENA, in which the entities of

the ontology do not behave like objects and classes of the programming

language.

Owlready provides the best of three worlds:

•	 The expressiveness of formal ontologies, that is to

say, the capability to represent complex knowledge in

detail, to relate them together, and to reason about this

knowledge

•	 The access speed of a relational database, with its fast

storage and search capabilities

•	 The agility of object-oriented programming languages

such as Python, with the ability to execute “imperative”

lines of code giving “orders” to the computer, which is

not possible with an ontology or a database alone

Chapter 1 Introduction

6

Owlready includes a graph database with an OWL semantic level.

This database is called quadstore because it stores quadruplets in RDF

format, that is to say, RDF triples of the form (subject, property, object) to

which is added an ontology identifier (see Chapter 11 for a more detailed

explanation of RDF and Owlready’s quadstore structure).

This quadstore stores all information from loaded ontologies in a

compact format. It can be placed in RAM or on disk, in the form of an

SQLite3 database file. Then, Owlready loads the ontology entities on

demand into Python when they are used, and removes them from RAM

automatically when they are no longer needed. In addition, if these entities

are modified in Python, Owlready automatically updates the quadstore.

The following diagram shows the Owlready general architecture:

This architecture makes it possible to load voluminous ontologies

(several tens or hundreds of gigabytes) while very quickly accessing

specific entities, for example, with a textual search. It also allows a level

Chapter 1 Introduction

7

of semantics corresponding to OWL ontologies (unlike many graph

databases that are limited to an RDF level). However, Owlready can also

be used as a simple object database, a graph database, or an Object-

Relational Mapper (ORM), without taking advantage of the benefits that

the expressiveness of ontologies can bring.

Owlready is released as free software (GNU LGPL license). This book

covers Owlready version 2-0.25 (owlready2 module). For its installation,

you can refer to section 2.11. If you use Owlready in an academic context,

please cite the following article:

Lamy JB. Owlready: Ontology-oriented
programming in Python with automatic
classification and high level constructs for
biomedical ontologies. Artificial Intelligence

In Medicine 2017;80:11-28 http://www.

lesfleursdunormal.fr/_downloads/article_

owlready_aim_2017.pdf

1.5  �Book outline
The first two chapters contain reminders: Chapter 2 introduces Python,

and Chapter 3 is an introduction to OWL ontologies. You can move quickly

on these chapters if you already master these notions.

Then Chapters 4, 5, and 6 explain how to manipulate and create

ontologies in Python with Owlready. These chapters present the basic

features of Owlready.

The following chapters describe more specific features. Chapter 7

is concerned with automatic reasoning, Chapter 8 with annotations

and textual search, and Chapter 9 with the management of medical

terminologies.

Chapter 1 Introduction

http://www.lesfleursdunormal.fr/_downloads/article_owlready_aim_2017.pdf
http://www.lesfleursdunormal.fr/_downloads/article_owlready_aim_2017.pdf
http://www.lesfleursdunormal.fr/_downloads/article_owlready_aim_2017.pdf

8

Finally, the last two chapters describe advanced features. Chapter 10

shows how to integrate Python methods into classes of an OWL ontology,

and Chapter 11 shows how to access Owlready’s RDF quadstore directly.

The source code for this book is available on GitHub via the book’s

product page, located at www.apress.com/978-1-4842-6551-2.

1.6  �Summary
In this introductory chapter, we presented formal ontologies, Python, and

Owlready, and we drew an outline of the book content.

Chapter 1 Introduction

http://www.apress.com/978-1-4842-6551-2

9© Lamy Jean-Baptiste 2021
L. Jean-Baptiste, Ontologies with Python, https://doi.org/10.1007/978-1-4842-6552-9_2

CHAPTER 2

The Python language:
Adopt a snake!
Python is a versatile and easy-to-learn programming language. It has

been in existence for almost 30 years, but it remained quite confidential

for many years and is now a big success—to the point of being one of the

most widely taught programming languages today. The main advantage of

Python is its simplicity and time saving for the user: with Python, I achieve

in one day what I would program in three days in Java and a week in C.

Python allows a significant gain of productivity.

Python is an open source software, and it is available for free. It runs

on virtually all existing operating systems (Linux PC, Windows PC, Mac,

Android, etc.). There are historically two versions of Python: version 2.x

(no longer supported but still used by old programs) and version 3.x

(currently supported and recommended). Owlready requires version 3.x,

so we’ll use this one in this book. However, the differences between the

two versions are minimal.

In this chapter, we will quickly introduce the basics of the Python

language and its syntax. However, if you have no programming skill yet, we

advise you to first consult a book entirely devoted to learning Python. On

the contrary, if you already know the Python language, you can go directly

to section 2.11 for installing Owlready.

https://doi.org/10.1007/978-1-4842-6552-9_2#DOI

10

2.1  �Installing Python
Under Linux, almost all distributions offer packages for Python (often

these packages will even be already installed). You can check that they

are present in the package manager of your distribution and install the

package python3 if necessary. Also, install the python3-pip and python3-

idle packages if your distribution distinguishes them from the main

python3 package.

On Windows, it is necessary to install Python. You can download it

from the following address:

http://python.org/download/

On Mac OS, Python is probably already installed; you can verify it by

running the command “python3 -v” in a terminal. Otherwise, please install

it from the preceding website.

2.2  �Starting Python
To program in Python, you can either use an integrated development

environment (IDE) or use a text editor and a terminal. If you’re new to

Python, the first option is probably the simplest; we suggest the IDLE

environment that is usually installed with Python 3.

Python is an interpreted language, so it can be used in two

different modes:

•	 The “shell” mode, in which the computer

interprets one by one the lines of code entered by

the programmer, as they are entered. This mode is

convenient for performing quick tests. The default

“Shell” window opened by IDLE corresponds to this

mode (see the following example). The “>>>” sign at

the beginning of the line is Python’s command prompt:

the interpreter prompts you to enter a new line of code.

Chapter 2 The Python language: Adopt a snake!

http://python.org/download/

11

Attention, in “shell” mode, the lines of code entered

are not saved and will be lost when closing the

terminal or IDLE!

•	 The “program” mode, in which the user writes a

multiline program, and then the computer executes

the entire program. This mode allows you to perform

complex programs. With IDLE, you can create a new

program with the File ➤ New file menu. A new window

will appear, in which you will write the program (see

the following example). The file will then be saved

(with the extension .py) and can be executed with the

Run ➤ Run module menu (or by pressing the F5 key).

Chapter 2 The Python language: Adopt a snake!

12

On Linux, you may prefer to use a text editor to enter programs

(e.g., Emacs, Vi) and a terminal to execute them:

•	 To have a “shell” mode, execute the command

“python3” in the terminal:

[Bash prompt]# python3

Python 3.7.1 (default, Oct 22 2018, 10:41:28)

[GCC 8.2.1 20180831] on linux

Type "help", "copyright", credits or "license" for more

information.

>>>

To quit Python, press Ctrl+D.

•	 To run a program, run the command “python3 file_

name.py” in the terminal (obviously replacing file_

name.py with the name of the file where you saved your

program, with the path if necessary).

By convention, in this book, we will write short examples of Python

code in the manner of the “shell” mode: the Python code is preceded by

the command prompt “>>>”, while the eventual output displayed by these

lines is displayed without this prefix, for example:

>>> print("Hello again!")

Hello again!

To execute this example, the “>>>” prompt should never be entered

(neither in “shell” mode nor in “program” mode). Only the code following

the prompt must be entered. When the command occupies multiple lines,

Python adds “...” in “shell” mode, as in the following example:

>>> print(

... "Still here ?")

Still here ?

Chapter 2 The Python language: Adopt a snake!

13

This is an “end of command” prompt. As before, the “...” should not

be entered.

Longer code examples will be presented as programs, as follows:

File file_name.py

print("It's me again!")

print("See you soon.")

The first line just indicates the filename; it does not have to be entered

in the program.

Finally, in the lines of code, the ↲ character will be used at the end of

a line to indicate a line break due to the limited width of the pages of this

book. In this case, you do not have to go back to the line when you are

programming, for example:

>>> x = "This is a very long text here, isn't it?"↲
+ "Indeed, it is."

2.3  �Syntax
2.3.1  �Comments
In Python, anything following the hash character “#” is a comment and is

not taken into account by the Python interpreter. Comments are used to

give guidance to programmers who will read the program, but ignored by

the machine. Here is an example:

>>> # This text is a comment, and thus it is ignored by Python!

Chapter 2 The Python language: Adopt a snake!

14

2.3.2  �Writing on screen
The print() function is used to write on the screen (in the shell, or on

the standard output in the “program” mode); we have already met it

previously. It is possible to display several values separated by commas:

>>> print("My age is", 40)

My age is 40

The print() function can be omitted in the “shell” mode, but it is

mandatory in the “program” mode.

>>> print(2 + 2)

4

>>> 2 + 2

4

2.3.3  �Help
Python has a large number of predefined functions. In “shell” mode, the

help() function is used to get help on a function, for example, for the

print() function:

>>> help(print)

Then, in the “shell” mode, you may exit the man page by pressing the

“Q” key on the keyboard.

2.3.4  �Variables
A variable is a name to which a value is associated. Often, the value will

only be known when the program is executed (e.g., when it is the result of a

calculation).

Chapter 2 The Python language: Adopt a snake!

15

The name of a variable must start with a letter or an underscore “_”,

and it can contain letters, numbers, and underscores. Python 3 accepts

accented characters in variable names, but spaces are forbidden.

In Python, variables do not need to be declared, and they are not

typed. The same variable can therefore contain any type of data, and

the type of its value can change during the program. The operator “=”

is used to define (or redefine) the value of a variable; it can be read

“takes the value of” (be careful, this is not the usual meaning of “=” in

mathematics).

>>> age = 39

>>> print(age)

39

In computation, the names of the variables are replaced by their

values:

>>> age + 1

40

The “=” operator can also be used to redefine the value of a variable.

For example, to increase the value of the variable age by 1, we will do:

>>> age = age + 1

>>> age

40

2.3.5  �Indentation
Indentation corresponds to the spaces to the left of the lines of code.

Unlike most other programming languages where indentation is just

a convention, in Python indentation is significant. Therefore, a bad

Chapter 2 The Python language: Adopt a snake!

16

indentation is a syntax error in Python! In particular, we should not add

space on the left outside conditions and loops (which we will see later).

The following example shows an indentation error:

>>> age

 File "<stdin>", line 1

 age

 ^

IndentationError: unexpected indent

In addition, it is recommended that you do not mix spaces and tabs

when indenting Python programs.

2.4  �Main datatypes
Python can manipulate various datatypes: integers (abbreviated as int),

real numbers (often called float), Unicode character strings (abbreviated as

str), and booleans (true or false value, abbreviated as bool). The datatype

of a variable does not have to be declared and may change during the

execution of the program. Here are examples of various datatypes:

>>> age = 31 # Integer

>>> weight = 64.5 # Floating-point number

>>> name = "Jean-Baptiste Lamy" # Character string

>>> teacher = True # Boolean

>>> student = False # Boolean

2.4.1  Integer (int) and floating-point
numbers (float)
Integers are numbers without a decimal part. There are no limits to integer

values in Python.

Chapter 2 The Python language: Adopt a snake!

17

Real numbers are usually represented by floating-point numbers

in computer science (they are called “float” because the position of the

comma is said to be floating: there can be many digits before the decimal

part and few after or vice versa). A dot is used to indicate the decimal

part, as in the following example:

>>> poids = 64.4

In Python, floats actually have a precision equivalent to “double”

numbers found in many other programming languages (including C, C++,

and Java).

Be careful, 10.0 is a float, while 10 is an integer.

The following table summarizes the main algebraic operations on

numbers:

Algebraic operations Examples

Addition >>> 2 + 2

4

Subtraction >>> 4 - 2

2

Multiplication >>> 3 * 4

12

Division >>> 10 / 3

3.3333333333333

Integer division >>> 10 // 3

3

Power >>> 3 ** 2

9

Chapter 2 The Python language: Adopt a snake!

18

2.4.2  �Booleans (bool)
Booleans can take two values, which are written True (true, integer value

1) and False (false, integer value 0) in Python.

2.4.3  �Character strings (str)
Character strings are texts or portions of text. There is no limit on

the number of characters (zero, one, or more). Strings are always

enclosed in quotation marks (single or double; it is better to use double

quotes because the single quotation mark is the same character as the

apostrophe). In Python 3, all strings are Unicode and can thus include any

character from any language.

>>> name = "Jean-Baptiste Lamy"

>>> empty_string = ""

To insert special characters in strings, use escape codes starting with a

backslash. Here are the most common:

Special characters Escape codes

Line break \n

Tab \t

Backslash \\

Simple quote \'

Double quote \"

In particular, on Windows, backslashes in filenames and paths must be

doubled, for example, “C:\\directory\\file.py”.

Chapter 2 The Python language: Adopt a snake!

19

Python also allows long character strings, which can span multiple

lines and include quotation marks. A long string starts with three quotation

marks and also ends with three quotation marks, as in the following

example:

>>> long_string = """This character string is long

... and may contain line breaks and

... quotation marks " without problems.

... Backslashs \\ must still be doubled, though."""

Single quotes can also be used for long character strings.

In Python, everything is an object, including strings. They thus have

methods, which we can call with the pointed notation “object.method

(parameters,...)”. The following table summarizes the main operations and

methods on strings.

String operations Examples

Get the length of a string (= the

number of characters)

>>> s = “Goodbye”

>>> len(s)

7

Get a character in a string (be careful,

the first character is zero and not one;

negative numbers are counted from

the end)

>>> s[0]

“G” # First character

>>> s[-1]

"e" # Last character

Get a part of the string >>> s[0:4]

"Good"

Find if a string is included in another >>> s.find("bye")

4 # Found in position 4

(return -1 if not found)

(continued)

Chapter 2 The Python language: Adopt a snake!

20

String operations Examples

Search from the end of the

string (R stands for right)

>>> s.rfind("o")

2 # Found in position 2

(return -1 if not found)

Split a string according to a separator >>> "alpha;beta;gamma".↲
split(";")

["alpha", "beta", "gamma"]

Cut a string according to white spaces

(spaces, line breaks, and tabs)

>>> "alpha beta gamma".↲
split()

["alpha", "beta", "gamma"]

Replace a part of a string by

another string

>>> "Come here!".↲
replace("here", "there")

"Come there!"

Concatenate two strings (= put them

end to end); be careful you have to add

a space if you want one

>>> "JB" + "LAMY"

"JBLAMY"

Format a string with values >>> last_name = "LAMY"

>>> first_name = "JB"

>>> "Hello %s!" %↲
first_name

"Hello JB!"

>>> "Hello %s %s!" %↲
(first_name, last_name)

"Hello JB LAMY!"

>>> rate = 90

>>> "Success rate: %s %%"↲
% rate

"Success rate: 90 %"

Chapter 2 The Python language: Adopt a snake!

21

2.4.4  �Lists (list)
Lists contain zero, one, or more elements (they are similar to arrays in

other programming languages, but their size can vary). The elements

can be of different types (integers, strings, etc.). The lists are created with

square brackets; the elements are given inside the square brackets and

separated by commas, for example:

>>> my_list = [0, "Lamy", True]

>>> empty_list = []

In a list of n elements, the elements are numbered from zero to n − 1.

By convention, the lists often receive a plural variable name, for example,

“animals” for a list of animals.

Python lists are also objects. The following table summarizes the main

operations and methods available on lists.

List operations Examples

Create a list >>> animals = ["elephant",

... "giraffe",

... "rhinoceros",

... "gazelle"]

Get the length of a list (= the number

of elements)

>>> len(animals)

4

Get an element from the list (be careful,

lists are numbered from zero and not one)

>>> animals[0]

"elephant" # First

>>> animals[-1]

"gazelle" # Last

(continued)

Chapter 2 The Python language: Adopt a snake!

22

List operations Examples

Get a part of the list >>> animals[0:2]

["elephant", "giraffe"]

Add an element at the end >>> animals.append("lion")

Add an element to a given position (0: first

position, etc.)

>>> animals.insert(0, "lynx")

Concatenate two lists >>> [1, 2] + [3, 4, 5]

[1, 2, 3, 4, 5]

Remove a given element >>> animals.↲
remove("gazelle")

Remove the element at a given position >>> del animals[-2]

Find if an element is present in a list >>> "lion" in animals

True

Sort a list (ascending/alphabetical order by

default)

>>> animals.sort()

Get the highest element from a list, or the

lowest

>>> max([2, 1, 4, 3])

4

>>> min([2, 1, 4, 3])

1

2.4.5  �Tuples (tuple)
Tuples are very similar to lists, the difference being that they are not

modifiable. Tuples are written in parentheses, instead of square brackets:

>>> triple = (1, 2, 3)

>>> pair = (1, 2)

>>> single_element_tuple = (1,) # Do not forget the comma here!

Chapter 2 The Python language: Adopt a snake!

23

2.4.6  �Dictionaries (dict and defaultdict)
A dictionary (or associative array, hashtable, or hashmap) maps keys to

values. For example, a dictionary can match a word with its definition

(hence the dictionary name). A dictionary is created with braces, in

which are placed zero, one, or more “key: value” pairs, separated by “,”. For

example (remember that the “...” at the beginning of the lines are part of

the Python prompt and should not be entered by the programmer):

>>> my_dict = {

... "fruit" : "a plant food with a sweet taste",

... "apple" : "a fleshy fruit with a red or green skin",

... "orange" : "a juicy fruit with an orange skin",

... }

In the previous example, the keys are “fruit”, “apple”, and “orange”, and

the values are the definitions. Each key has one and only one value.

The keys of a dictionary must be immutable (i.e., nonmodifiable).

Therefore, we cannot use a list as a key (a tuple is commonly used instead).

Python dictionaries are also objects. The following table summarizes

the main operations and methods on dictionaries.

Dict operations Examples

Get the number of keys (or values) in the

dictionary

>>> len(my_dict)

3

Get the value associated with a key >>> my_dict["apple"]

"a fleshy fruit with a red or

green skin"

Add or modify the value for a given key >>> my_dict["clef"] = "value"

Delete a key (and its associated value) >>> del my_dict["clef"]

(continued)

Chapter 2 The Python language: Adopt a snake!

24

Dict operations Examples

Search if a key is present in

the dictionary

>>> "apple" in my_dict

True

Recover all the keys >>> for key in my_dict: ...

or

>>> keys = list(my_dict.↲
keys())

Recover all the values >>> for value in my_dict.↲
values(): ...

or

>>> values = list(my_dict.↲
values())

Collect all (keys, values) pairs

(as tuples)

>>> for key, value in↲
my_dict.items(): ...

or

>>> pairs = list(my_dict.↲
items())

Python also offers a default dictionary, called defaultdict, which is

often useful. It is defined in the collections module (we will see modules

later; in the following example, the first line corresponds to the import of

the module; see 2.10.1). When you get a value from a default dictionary

and the key is not present in the dictionary, it is automatically added with

a default value. When it is created, the defaultdict takes a parameter that

is the default datatype (it can be a datatype, a function, or a class, which we

will see later).

Chapter 2 The Python language: Adopt a snake!

25

The following example creates a defaultdict with the int type. The

default value is the integer 0.

>>> from collections import defaultdict

>>> d = defaultdict(int)

>>> d["new_key"]

0

>>> d["new_key"] = d["new_key"] + 1

>>> d["new_key"]

1

>>> d["new_key"] = d["new_key"] + 1

>>> d["new_key"]

2

Here is a second example that creates a defaultdict with the list

type. The default value is therefore an empty list. A defaultdict of list is

commonly used when each key may be mapped to several values (i.e., a

list of values).

>>> from collections import defaultdict

>>> d = defaultdict(list)

>>> d["new_key"]

[]

>>> d["new_key"].append("a")

>>> d["new_key"]

['a']

>>> d["new_key"].append("b")

>>> d["new_key"]

['a', 'b']

Chapter 2 The Python language: Adopt a snake!

26

2.4.7  �Sets (set)
Sets are very close to lists from a functionality point of view, and to

dictionaries from an implementation point of view. Unlike lists, elements

are not ordered, and there cannot be a duplicate. Sets are written in braces,

like dictionaries, but with elements instead of “key: value” pairs:

>>> my_set = {1, 2, 1, 3}

>>> len(my_set)

3

Note that the duplicate (the second 1) has been removed.

The empty set must be created with the set() function, to avoid

confusion with an empty dictionary (which is noted as {}):

>>> empty_set = set()

The add() method allows you to add an element to a set (it replaces the

append() method of lists) and the remove() method to remove an element.

Classical set operations (union, intersection, etc.) are available via

methods and operators (“&” for the intersection, “|” for the union).

Immutable sets (frozenset) are used as keys in dictionaries, instead of

sets. They are to sets what tuples are to lists.

2.4.8  �Files (open)
Files are open with the open() function:

>>> my_file = open("path/filename.ext", "r")

The second parameter is the “mode”; it can be one of the following

values:

•	 “r” to read a text file (default value)

•	 “w” to write a text file

Chapter 2 The Python language: Adopt a snake!

27

•	 “rb” to read a binary file

•	 “wb” to write a binary file

Opening a file for writing automatically creates the file if it does not

exist and overwrites it otherwise. Python handles the conversion of line

breaks (Unix/Windows/Mac) and the encoding of text files (UTF-8 by

default).

File operations Examples

Read the whole content of the file,

as a string

>>> content = my_file.read()

Write to a file >>> my_file.write("content")

Close the file (automatically called when

the file object is destroyed by Python)

>>> my_file.close()

2.4.9  �Conversion between datatypes
It is sometimes necessary to convert from one type of data to another.

The int(), float(), str(), list(), tuple(), set(), and frozenset()

functions allow converting a value to an integer, float, string, list, tuple, set,

or immutable set, respectively.

Convert to Syntax

Integer int(x)

Float float(x)

Boolean bool(x)

List list(x)

(continued)

Chapter 2 The Python language: Adopt a snake!

28

Convert to Syntax

Tuple tuple(x)

Set set(x)

Immutable set frozenset(x)

Dictionary dict(x)

x is of the form [(key1, value1), (key2,

value2)...]

String str(x) # String for displaying to the user

repr(x) # String for displaying to the

programmer

The following example converts the integer 8 to a string:

>>> str(8)

'8'

2.5  �Conditions (if)
The conditions allow executing commands only in certain situations,

which will be determined at the execution of the program. The general

Python syntax for conditions is as follows:

if condition1:

 instruction executed if condition1 is true

 instruction executed if condition1 is true...

elif condition2:

 instruction executed if condition1 is false

 and condition2 is true...

Chapter 2 The Python language: Adopt a snake!

29

else:

 instruction executed if condition1

 and condition2 are false...

continuation of the program

(executed whether the conditions are true or false)

elif is the contraction of else and if. The “elif” and “else” parts are

optional, and several “elif” parts may be present. The indentation (i.e.,
the white space at the beginning of the line) is important because it
indicates where the condition ends. The number of spaces is the choice

of the programmer but must remain constant, and it is recommended to

avoid mixing space characters and tabs.

The condition can use the standard comparison operators:

•	 < (less than)

•	 > (greater than)

•	 <= (less than or equal to)

•	 >= (greater than or equal to)

•	 == (equal to, not to be confused with the simple “=”

used for defining variables)

•	 != (different from)

•	 is (test the identity between two objects)

Logical operators “and”, “or”, and “not” can be used to combine several

conditions together, as in the following example:

>>> if (age > 18) and (age < 65):

... print("You are an adult.")

When there is only one instruction to execute, it is possible to put

everything on a single line:

>>> if age >= 65: print("You are an elderly person.")

Chapter 2 The Python language: Adopt a snake!

30

Conditions can be nested, using multiple levels of indentation:

>>> if age == 0:

... print("You are a newborn.")

... if weight > 10.0:

... print("I think there is an error in the weight!")

2.6  �Loops (for)
A loop makes it possible to execute the same commands several times. In

Python, loops traverse a list and execute a series of instructions for each

element of the list (this is a type of loop often called “for each” in other

programming languages). The current element is placed in a variable of

your choice. The general syntax of the for loop is as follows:

for variable in my_list:

 �if conditions1: continue # Move to the next item in the

list

 if conditions2: break # Stop the loop

 repeated instructions...

else:

 instructions executed only if the loop went all the way

 (i.e. no break was encountered)

continuation of the program (executed once)

The continue instruction interrupts the current iteration and

immediately moves to the next element. The break instruction interrupts

the loop and exits immediately from the loop. Finally, the else part

is executed only if the loop has gone to the end (i.e., it has not been

interrupted by break). Of course, the presence of continue, break, and

else is not mandatory in a given loop.

Chapter 2 The Python language: Adopt a snake!

31

The iterated list can be a variable containing a list, but also a string

of characters (the loop then iterates over each character of the string), a

set (the loop iterates over the elements of the set, in an arbitrary order), a

dictionary (the loop iterates over the keys of the dictionary), and so on. It

can also be a list of index generated with the range() function:

>>> range(4)

Be careful, the range() function of Python has nothing to do with the

“range” of an OWL property, which we will see later!

Here is an example of a loop. It considers a list of animal names and

displays one animal per line:

>>> animals = ["elephant", "zebra", "rhinoceros", "dolphin"]

>>> for animal in animals:

... print(animal)

elephant

zebra

rhinoceros

dolphin

If you want to also display the number of each animal in the list, we

can use range():

>>> for i in range(len(animals)):

... print(i, animals[i])

0 elephant

1 zebra

2 rhinoceros

3 dolphin

Chapter 2 The Python language: Adopt a snake!

32

Loops can also be integrated in the definition of a list: they are

comprehension lists. Here is an example:

>>> integers = [1, 2, 3]

>>> even_integers = [2 * i for i in integers]

>>> even_integers

[2, 4, 6]

This comprehension list is identical to the list created by the

following loop:

>>> even_integers2 = []

>>> for i in integers:

... even_integers2.append(2 * i)

>>> even_integers2

[2, 4, 6]

Similarly, Python proposes comprehension sets and dictionaries,

for example:

>>> twofold = { i: 2 * i for i in integers }

>>> twofold

{1: 2, 2: 4, 3: 6}

>>> twofold[2]

4

When one wishes to loop on several lists, two cases can appear:

•	 The lists are not paired. In this case, we will use nested

loops, as in the following example:

>>> animals = ["elephant", "zebra", "rhinoceros",↲
"dolphin"]

>>> environments = ["savanna", "forest", "river"]

>>> for animal in animals:

... for environment in environments:

Chapter 2 The Python language: Adopt a snake!

33

... print("a", animal, "in the", environment)

a elephant in the savanna

a elephant in the forest

a elephant in the river

a zebra in the savanna

a zebra in the forest

a zebra in the river

a rhinoceros in the savanna

a rhinoceros in the forest

a rhinoceros in the river

a dolphin in the savanna

a dolphin in the forest

a dolphin in the river

•	 The lists are paired, two by two (or three by three, etc.,

that is to say that the first element of list 1 is associated

with the first element of list 2, the second element of

list 1 with the second element in list 2, etc.). The zip()

function allows you to loop on two (or more) paired

lists. In the following example, we have a list of animals

and a list of environments paired, that is, animal #1

goes with environment #1, animal #2 with environment

#2, and so on:

>>> animals = ["elephant", "zebra", "rhinoceros",↲
"dolphin"]

>>> environments = ["savanna", "forest", "savanna",↲
"river"]

>>> for animal, environment in zip(animals,↲
environments):

... print("a", animal, "live in the", environment)

a elephant live in the savanna

Chapter 2 The Python language: Adopt a snake!

34

a zebra live in the forest

a rhinoceros live in the savanna

a dolphin live in the river

2.7  �Generators
A generator makes it possible to browse a series of elements (in the

manner of a list); however, it does not store in memory all the elements like

a list: the generator produces the elements one by one, and these must be

immediately processed (e.g., using a loop). The generator therefore allows

a gain in performance, especially when working on large volumes of data.

This is why a number of Owlready methods return generators and not lists.

Generators can also be converted into lists with the list() function,

for example, for display, as follows:

>>> print(list(my_generator))

On the contrary, to loop on a generator, it is best not to use list() to

improve performance, as follows:

>>> for x in my_generator: print(x)

2.8  �Functions (def)
Functions are used to define a group of instructions (or “subroutine”), with

a view to executing it several times at different places of the main program.

This group of instructions can receive parameters: these parameters

will be passed to the call of the function and will be available inside

the function as local variables. The functions are created with the def

statement whose general syntax is:

def function_name(parameter1, parameter2 = default_value,...):

 function body

 return return_value

Chapter 2 The Python language: Adopt a snake!

35

Functions can receive multiple parameters, and each can have a

default value.

The return statement indicates the return value of the function, and

interrupts it.

Then, the function can be called with parentheses (parentheses are

mandatory, even if there are no parameters):

returned_value = function_name(parameter1_value, parameter2_

value)

returned_value = my_function_with_no_parameter()

Here is a simple example of a function:

>>> def twofold(x):

... return x * 2

>>> twofold(3)

6

>>> twofold("bla")

'blabla'

Note that the function parameters are not typed. That’s why in the

previous example we were able to use our twofold() function on both an

integer and a string.

When calling the function, the parameters can be named, which allows

passing them in any order:

returned_value = function_name(parameter2 = parameter2_value,

 parameter1 = parameter1_value)

A function can also have a variable number of parameters:

def my_function(*args, **kargs):

 function body

 return returned_value

Chapter 2 The Python language: Adopt a snake!

36

args (arguments) will receive a tuple with the values of non-named

parameters, and kargs (keyword arguments) a dictionary with named

parameters. Here is an example:

>>> def function_with_variable_parameters(*args, **kargs):

... print(args, kargs)

>>> function_with_variable_parameters(1, 2, 3, extra_param = 4)

(1, 2, 3) { "extra_param": 4 }

This syntax can also be used when calling a function:

>>> kargs = { "parameter1": 1, "parameter2": 2 }

>>> function(**kargs)

equivalent to function(parameter1 = 1, parameter2 = 2)

2.9  �Classes (class)
2.9.1  �Classes and instances
Classes are the basis of object-oriented programming. A class represents a

template for creating objects, for example, we may have a class for creating

animals or books. A class can also be seen as a general category of objects,

for example, a “book” is a general category, and many different books exist

with different titles, authors, and so on.

By convention, class names always start with a capital letter (e.g.,

“Book”). The class defines the available properties for each object of this

class (e.g., for the class Book: title, author, and price) and the methods

that can be applied to each object (e.g., for the class Book: format a book

citation).

The class will then create objects of the class, called “instances”, for

example, “The Lord of the Rings” and “Nine Princes in Amber” will be two

instances of the same “Book” class. The class therefore makes it possible

Chapter 2 The Python language: Adopt a snake!

37

to “factorize” the part common to the instances: the property definitions

and the methods, while the values of the properties are specific to each

instance.

In Python, classes are created with the class statement. The methods

are created inside classes with the def statement (as for functions); the

first parameter represents the object on which the method is applied (it is

called self by convention; it is equivalent to the keyword this in Java or

C++ but appears explicitly in the method parameters). Attributes are not

typed, just like variables. They are defined by giving them a value, with the

syntax “self.attribute_name = value”.

The general syntax of the class statement is:

class my_class(parent_class1, parent_class2,...):

 class_attribute_name = value

 def __init__(self, parameters...): # constructor

 self.object_attribute_name = value

 def method1(self, parameters...):

 method_body

 return returned_value

 def method2(self, parameters...):

 method_body

 return returned_value

When a class is empty (it does not contain any method), it is necessary

to add a pass statement, to indicate it to Python:

class my_empty_class(parent_class1, parent_class2,...):

 pass

In the body of methods, the “self” active object must always be

specified when one wants to obtain or modify its attributes (self.

attribute) or to call its methods (self.method(parameters...)).

Chapter 2 The Python language: Adopt a snake!

38

__init__() is a special method called a “constructor”. If present, the

constructor is automatically called when a new instance is created. The

constructor can receive parameters, whose values will be given when the

instance is created.

Here is an example of a definition of the “Book” class:

>>> class Book(object):

... def __init__(self, title, author, price):

... self.title = title

... self.author = author

... self.price = price

... def format_citation(self):

... return '%s' by %s (price: %s€) % (self.title,↲
 self.author, self.price)

In the previous definition, we defined the Book class from the object

class, which is the most general class in Python.

Then, to create an instance of a class, the class is called in the

manner of a function. Any parameters will be passed to the __init__()

constructor.

my_object = my_class(constructor_parameters...)

The dotted notation is used to access the attributes and methods of the

object:

print(my_object.attribute)

my_object.attribute = value

my_object.method(parameters...)

The self parameter is never given when calling the method on an

instance. The previous call is equivalent to

my_object_class.method(my_object, parameters...)

Chapter 2 The Python language: Adopt a snake!

39

For example, we can create one or more instances of the Book class,

obtain their property values or modify them, and call their methods:

>>> ldr = Book("The Lord of the Rings", "JRR Tolkien", 24)

>>> npa = Book("Nine Princes in Amber", "R Zelazny", 12)

>>> npa.author

'R Zelazny'

>>> npa.price = 10

>>> npa.format_citation()

"'Nine Princes in Amber' by R Zelazny (price: 10€)"

2.9.2  �Inheritance
Inheritance is a fundamental mechanism in object-oriented programming.

This mechanism allows you to create new classes that share a similar

blueprint to a given class, that is to say, to define subcategories within

a class. For example, comics are a particular subcategory of books: the

Comic class is a subclass that inherits from Book. The general class (here,

Book) is called the “superclass” or “parent class”, and the more specific

class (here, Comic) is called the “subclass” or the “child class”.

The child class inherits all the attributes and methods of its parent

class(es): just like the instances of the Book class, those of the Comic class

have a title, an author, and a price (attributes), and it is possible to format a

citation (method). However, the child class may have additional attributes

and methods. For example, a comic book is characterized by its author (or

scriptwriter) but also by its illustrator: we can therefore add an “illustrator”

attribute to the Comic class. Inheritance makes it possible to “factorize”

the source code and to simplify it by avoiding repeating the attributes and

methods common to the parent class and its children classes.

In addition, it is possible to redefine the methods of the parent class

in the child class. For example, the constructor of the Comic class can

be redefined to accept an additional “illustrator” parameter, and the

Chapter 2 The Python language: Adopt a snake!

40

format_citation() method can be redefined to display the illustrator

name. When redefining a method, it is possible to delegate to the parent

class method by calling the parent class using the keyword super(), as in

the following example:

class my_child_class(my_parent_class1, my_parent_class2,...):

 def my_method(self, parameters...):

 �parent_returned_value = super().my_method

(parameters...)

 additional child class method body

 return child_return_value

The following example defines the Comic class, inheriting from the

Book class:

>>> class Comic(Book):

... def __init__(self, title, author, illustrator, price):

... super().__init__(title, author, price)

... self.illustrator = illustrator

... def format_citation(self):

... return "'%s' written by %s and illustrated by %s↲
(price: %s€)" % (self.title, self.author, self.illustrator,↲
self.price)

The constructor method __init__() and the format_citation()

method have been redefined in the Comic child class. The new constructor

definition supports the illustrator attribute and delegates to the parent

class method for managing the title, author, and price attributes.

The following example creates an instance of Comic:

>>> re = Comic("Return to the Earth", "Yves Ferry",↲
"Manu Larcenet", 10)

>>> re.format_citation()

"'Return to the Earth' written by Yves Ferry and illustrated by↲
Manu Larcenet (price: 10€)"

Chapter 2 The Python language: Adopt a snake!

41

Note that we can call the format_citation() method without

knowing if the object on which we call it is a Book or a Comic. Python

will automatically choose the right method, depending on the class of the

object. This mechanism is called polymorphism.

The following example goes through the three instances we created

and displays their citation. The x variable sometimes contains a Book and

sometimes a Comic, and the format_citation() method is called without

knowing the exact class of the object x.

>>> for x in [ldr, npa, re]:

... print(x.format_citation())

"'The Lord of the Rings' by JRR Tolkien (price: 24€)"
"'Nine Princes in Amber' by R Zelazny (price: 10€)"
"'Return to the Earth' written by Yves Ferry and illustrated↲
by Manu Larcenet (price: 10€)"

Python also allows multiple inheritance: several parent classes can be

given when defining a child class, separated by commas.

2.9.3  �Special method names
In Python, method names with two underscores at the beginning and end

are special methods. Here are the main ones:

•	 __init__(self, parameters...): Constructor

•	 __del__(self): Destructor

•	 __repr__(self): Returns a string for displaying to the

programmer

•	 __str__(self): Returns a string for displaying to the

final user

Chapter 2 The Python language: Adopt a snake!

42

2.9.4  Functions and operators for
object-oriented programming
The following three attributes and functions can be used to analyze the

relationships between objects and/or classes:

•	 object.__class__ returns the class or the type of an

object, for example:

>>> ldr.__class__

<class 'Book'>

>>> "blabla".__class__

<class 'str'>

•	 isinstance(object, Class) tests whether the given

object belongs to the given class (including child

classes, grandchild, etc.), for example:

>>> isinstance(ldr, Book)

True

>>> isinstance(ldr, Comic)

False

>>> isinstance(re, Book)

True

>>> isinstance(re, Comic)

True

•	 issubclass(Class, parent_class) tests whether the

given class inherits from parent_class, for example:

>>> issubclass(Comic, Book)

True

>>> issubclass(Book, Comic)

False

Chapter 2 The Python language: Adopt a snake!

43

The is operator allows testing whether two objects are the same:

>>> ldr is ldr

True

>>> ldr is npa

False

Finally, the following functions are used to manipulate the attributes

of an object when the name of the attribute is not known at the time of

writing the program, but is available during execution in a variable (as a

string):

•	 hasattr(object, attribute_name) tests whether the

object has an attribute named attribute_name.

•	 getattr(object, attribute_name) returns the value

of the attribute named attribute_name for the object.

•	 setattr(object, attribute_name, value) defines

the value of the attribute named attribute_name for

the object.

•	 delattr(object, attribute_name) deletes the

attribute named attribute_name from the object.

>>> attribute_name = "author"

>>> hasattr(ldr, attribute_name)

True

>>> getattr(ldr, attribute_name)

'JRR Tolkien'

These methods are particularly useful for introspection, that is, for

manipulating objects in a generic way, without knowing their class or their

attributes.

Chapter 2 The Python language: Adopt a snake!

44

2.10  �Python modules
Python modules define additional functions and classes in a specific domain

(such as mathematics, bioinformatics, 3D graphic, etc.). Owlready2 is an

example of Python module. The functions and classes contained in these

modules are not available by default in Python; it is mandatory to import the

corresponding modules before accessing and using them.

2.10.1  �Importing a module
There are two ways for importing a module in Python:

	 1.	 Importation of the module with its name. With

this method, it is necessary to mention the name

of the module followed by a “.” in front of each of

the functions and classes of the module. Here is an

example with the math module:

>>> import math

>>> math.cos(0.0)

1.0

	 2.	 Import the contents of the module. With this

method, the functions and classes of the module

can be used directly, without having to mention the

name of the module at each call. On the other hand,

if several modules define functions or classes having

the same name, this could be problematic: in this

case, the last import will overwrite the previous one.

Here is another example with the math module:

>>> from math import *

>>> cos(0.0)

1.0

Chapter 2 The Python language: Adopt a snake!

45

The Python language includes a large number of “standard” modules,

which are installed with Python itself. The official Python documentation

describes each of these modules; it is available online at the following

address:

https://docs.python.org/3/py-modindex.html

Other modules can be installed from PyPI (Python Package Index),

available at

https://pypi.org/

2.10.2  �Installing additional modules
The “pip3” tool allows downloading, installing, and updating

automatically Python 3 modules over the Internet from PyPI. This tool can

be used on the shell command line (under Unix/Mac) or in the MS-DOS

command prompt (on Windows). The following command line installs a

Python module (or update it, if it is already installed):

pip3 install -U name_of_the_module_to_install

It is preferable to install the modules as “root” (or superuser, under

Linux/Mac) or “administrator” (under Windows), so that they are available

to all users. However, this is not an obligation: if you do not have the

necessary rights for a global installation, you can install the modules only

for the current user, with the “--user” parameter. The following command

line installs a module for the current user:

pip3 install -U --user name_of_the_module_to_install

2.11  �Installing Owlready2
Owlready version 2 can be installed from the Internet with the “pip3” tool;

the corresponding module is called “owlready2” (be careful not to forget

the version number 2).

Chapter 2 The Python language: Adopt a snake!

https://docs.python.org/3/py-modindex.html
https://pypi.org/

46

In addition, Owlready offers a version optimized in Cython, a language

derived from Python compiling in code C. In order to benefit from this

optimized version, it is necessary to install beforehand the “cython” module.

However, if the installation of Cython went wrong, or if you do not have a C

compiler (especially on Windows), you can install Owlready without Cython,

at the price of (slightly) reduced performances when loading ontologies.

Finally, the following Python modules will also be used in the rest of

the book: “Flask”, “MyGene”, and “RDFlib”.

2.11.1  �Installing Owlready2 from terminal
The following commands can be used to install Owlready2 and the other

modules in a terminal (Bash terminal under Linux/Mac, DOS command-

line interface under Windows):

pip3 install -U cython

pip3 install -U owlready2 Flask mygene rdflib

If you do not have root or administrator privileges, use the following

commands to install the modules for the active user:

pip3 install -U --user cython

pip3 install -U --user owlready2 Flask mygene rdflib

2.11.2  �Installing Owlready2 from IDLE or Spyder
(or any Python shell)

You can use the following Python commands to install Owlready2

from any Python 3.7.x console, including those found in the integrated

development environment, including IDLE or Spyder3:

>>> import pip.__main__

>>> pip.__main__._main(["install", "-U", "--user", "cython")

Chapter 2 The Python language: Adopt a snake!

47

>>> pip.__main__._main(["install", "-U", "--user", "owlready2",

"rdflib")

>>> pip.__main__._main(["install", "-U", "--user",

"Flask", "mygene")

2.11.3  �Manual installation of Owlready2
In case of troubles, Owlready2 can also be installed manually in five steps:

	 1.	 Download the compressed sources from PyPI:

https://pypi.org/project/Owlready2/#files.

	 2.	 Decompress the compressed sources, for example,

under “C:\” under Windows.

	 3.	 The source directory is named “Owlready2-0.

xx” where “xx” is the version number (e.g.,

“Owlready2-0.25”). Rename this directory as

“owlready2”, for example, “C:\owlready2”.

	 4.	 Add the directory containing the source directory

(“C:\” in our example) in your PYTHONPATH; this

can be done in Python as follows (NB: do not forget

to double any backslash!):

>>> import sys

>>> sys.path.append("C:\\")

	 5.	 You can now import Owlready2!

>>> import owlready2

Chapter 2 The Python language: Adopt a snake!

https://pypi.org/project/Owlready2/#files

48

2.12  �Summary
In this chapter, we have seen how to perform basic programming in

Python, including the language syntax, control structures such as

conditions and loops, and object-oriented programming. We also reviewed

the main Python datatypes, such as character strings or lists. Finally, we

have seen how to install Python modules and in particular Owlready and

the other modules needed for the examples in the rest of this book.

Chapter 2 The Python language: Adopt a snake!

49© Lamy Jean-Baptiste 2021
L. Jean-Baptiste, Ontologies with Python, https://doi.org/10.1007/978-1-4842-6552-9_3

CHAPTER 3

OWL ontologies
The term “ontology” comes from philosophy and corresponds to

the “science of being”. This term was then used in computer science

to designate a formal definition of all the objects in a domain and

the relationships existing between these objects. It is thus a “formal

ontology”. An ontology therefore aims to structure and formalize

objects in a domain, as independent as possible of the intended

application: the ontology can thus be reused for other applications in

the same domain.

Concretely, formal ontologies can be used to achieve two objectives:

•	 Perform automatic reasoning: Formal ontologies allow

logical deductions to be made, using a reasoner. For

example, an ontology of animals can deduce that a

white and black striped animal is actually a zebra.

Automatic reasoning will be more particularly on the

subject of Chapter 7 of this book.

•	 Link knowledge from different sources: Formal

ontologies use Internet addresses (called IRI,

Internationalized Resource Identifier) to identify

different entities (or objects). Therefore, all ontologies

share the same namespace: any ontology can refer to

any other. In addition, ontologies allow the definition

of equivalence relationships: thus, if the same thing has

https://doi.org/10.1007/978-1-4842-6552-9_3#DOI

50

been declared as two distinct entities in two different

ontologies by two different people, a third person can

add an equivalence relationship between those entities

so that they become one.

These two objectives are complementary, because linking knowledge

can make new reasoning possible.

In this chapter, we will explain what a formal ontology is, without

going into the theoretical aspects. We will emphasize the similarities

and differences between ontologies and the object model used in

programming, and we will construct a simple example of ontology which

we will then use again to illustrate the examples in the following chapters.

3.1  �An ontology… what does it look like?
From a theoretical point of view, an ontology contains axioms. Description

logics are used to formalize the definitions of entities and represent them

in the form of logical axioms. Appendix A briefly describes these logics.

However, it doesn’t matter if you don’t understand description logics and

the associated formulas—I myself started using formal ontologies long

before I knew or understood these formulas! This will not prevent you from

programming your first ontologies in the rest of this book or even using the

ontologies effectively.

From a practical point of view, an ontology makes it possible to

define a model, in the manner of classes and instances of programming

languages like Python (see 2.9), but with a higher level of expressiveness,

that is to say, in much more detail. Ontology and object-oriented

programming therefore share many elements in common, but often use

Chapter 3 OWL ontologies

51

different terms to refer to identical or very similar things. The following

table gives a correspondence between the vocabularies of the world of

object-oriented programming and that of formal ontologies:

Object-oriented programming Formal ontology

Object Entity

Module Ontology

Class Class

Class inheritance Class inheritance, also called “is-a” relation

— (no equivalent) Property inheritance

Instance Individual

Attribute or property Property, role, or predicate

Value of an attribute for an instance Relation

Class name IRI

Datatype Datatype

Method — (no equivalent)

— (no equivalent) Logical constructor

Restriction

Disjoint

The ontology-oriented programming, which we will see in the next

chapter, will bring these two worlds together.

An ontology is therefore a set of entities, which can be classes,

properties, or individuals. Compared to the object model of Python (or

any other object-oriented programming language), we have three main

differences:

•	 Properties are defined independently and outside the

classes.

Chapter 3 OWL ontologies

52

•	 Individuals can belong to one class, but also to several

classes (this is multiple instantiation, which is similar

to multiple inheritance, but for instances).

•	 The ontology is based on the Open-World assumption:

that is, anything that is not expressly prohibited is

considered possible. For example, if we define that

the book “The Lord of the Rings” has as author “JRR

Tolkien”, the Open-World assumption leaves the

possibility that other additional authors exist for this

book. Since JRR Tolkien is the sole author, we must

also indicate that “The Lord of the Rings” has no other

authors than “JRR Tolkien” (typically using an OWL

restriction).

Several languages exist for ontologies; OWL (Web Ontology Language)

is by far the most widely used today. OWL ontologies can be saved in files

in RDF/XML format (the most common format), but also in OWL/XML,

N-Triples, Turtle, and other formats.

3.2  Creating ontologies manually
with the Protégé editor
It is possible to create an ontology by hand with an ontology editor. By far

the most used editor is Protégé. It is available free of charge at the following

address: https://protege.stanford.edu. We will use it later to build our

example ontology on bacteria.

Chapter 3 OWL ontologies

https://protege.stanford.edu

53

3.3  �Example: An ontology of bacteria
In order to illustrate the construction of an ontology and the possibilities

it can offer, we will take as an example an ontology of bacteria. This

ontology aims to describe bacteria and their physical and chemical

characteristics. We will, however, limit ourselves to a few simple

characteristics and a small number of species for obvious reasons of

brevity. I apologize in advance to my biologist readers for the sometimes

crude simplifications that we will have to carry out—the conception of a

complete and exact ontology of bacteria would constitute a real research

work in its own right!

We will only retain the following three characteristics for describing

bacteria:

	 1.	 Their shape: Bacteria can be round or rod shaped

(elongated shape).

	 2.	 Their grouping: Bacteria can be isolated from each

other or grouped in pairs, in clusters, or in chains,

which can be small or long chains.

	 3.	 Their Gram status: Gram + bacteria are colored by

the Gram test, unlike Gram – bacteria.

Figure 3-1 shows a classification of bacteria according to these

characteristics. Round bacteria are called “coccus”, and rod ones are called

“bacillus”.

In addition, we will only retain the following three families of

pathogenic bacteria:

	 1.	 Staphylococcus: Round shape, grouped in clusters,

Gram +

	 2.	 Streptococcus: Round shape, grouped in small

chains but never isolated, Gram +

Chapter 3 OWL ontologies

54

	 3.	 Pseudomonas: Rod shape, grouped in pairs or

isolated, Gram –

Thereafter, we will consider that a bacterium can have several

groupings: indeed, the observation never relates to a single bacterium

but on several. It is therefore common to observe several groupings for

the same species of bacteria: for example, Staphylococci which group

in clusters may occasionally be present singly or in pairs. However,

Streptococci are never isolated but always grouped (in pairs, in clusters,

and, of course, preferably in chains).

Figure 3-1.  Simple classification of bacteria according to three
criteria

Chapter 3 OWL ontologies

55

Figure 3-2 gives the class diagram in UML (Unified Modeling

Language). Please note, however, that ontologies allow more information

to be represented than what appears on the class diagram. For example,

(practically) all Gram + bacteria of round form grouped in clusters are

Staphylococci. For this species, it will therefore be possible to deduce the

class of bacteria, its shape, grouping, and Gram status. On the contrary,

Pseudomonas are not the only bacteria of rod shape, isolated, or in pairs.

This is an important difference because it will impact automatic reasoning;

however, a “classic” object model (like that of Python; see 2.9) does not

allow taking it into account.

At the very beginning of this chapter, we defined an ontology as “as

independent as possible from the intended application”. For example, the

ontology of bacteria could have multiple applications, such as:

•	 Create an encyclopedic website describing the

properties of the different bacteria (see 4.12)

•	 Facilitate the entry or extraction of information on

bacteria (see 5.14)

Figure 3-2.  UML class diagram of the bacteria ontology

Chapter 3 OWL ontologies

56

•	 Help identify an unknown bacterium (see 7.7)

•	 Enrich with information on bacteria already existing

ontologies or resources, such as UMLS (see 9.10)

•	 Facilitate statistical studies in a hospital by allowing

the grouping of similar bacteria (to answer questions

such as “has the number of infections with anaerobic

bacteria increased in the last month?”)

Each of these applications could be achieved with a specific knowledge

base. For example, the identification of bacteria could be done with a

knowledge base composed of rules like the following one:

IF shape = round AND grouping = in cluster AND

gram = ’+’

THEN staphylococcus

However, an ontology is capable of achieving all these applications

from the same source of knowledge, which greatly facilitates the

maintenance and reuse of this knowledge.

In the following sections, we will build a (small) formal ontology in

OWL from this classification of bacteria, using the Protégé editor.

3.4  �Creating a new ontology
When you launch the Protégé editor, it automatically creates a new empty

ontology. The editor includes several tabs; by default, the Active Ontology

tab is displayed.

Chapter 3 OWL ontologies

57

In this tab, we will define the IRI of our ontology. The IRI is the

“name” of the ontology, and this name takes the form of an Internet

address. Please note, however, the IRI must be in the form of an Internet

address, but the ontology does not need to be available on the Internet

at this address! It is thus usual to create ontologies whose IRI begins with

“http://www.semanticweb.org/” or “http://www.test.org/”, without

holding the rights to these Internet domain names.

We will call our bacteria ontology:

http://lesfleursdunormal.fr/static/_

downloads/bacteria.owl

(NB: This Internet address points to my personal site, on which you

can actually download the full ontology). You can enter this IRI in the

“Ontology IRI” field of Protégé, as shown in the following screenshot:

You can then save the ontology in RDF/XML format, in a file that

you will call “bacteria.owl”. Do not forget thereafter to regularly save the

ontology during its edition.

Chapter 3 OWL ontologies

http://www.semanticweb.org/”
http://www.test.org/”
http://lesfleursdunormal.fr/static/_downloads/bacteria.owl
http://lesfleursdunormal.fr/static/_downloads/bacteria.owl

58

3.4.1  �Classes
In Protégé, the “Classes” tab allows you to navigate through existing classes

and to create new classes. The buttons and allow you to create a

new daughter or sister class of the selected class, respectively. Using these

buttons, we can create a class hierarchy corresponding to our previous

UML model, as in the following screenshot:

In ontologies, inheritance is also called “is-a relationship”: for example,

we can say that a Pseudomonas is a Bacterium.

3.4.2  �Disjoints
An important difference between an ontology and an object model is

as follows: in an ontology, an individual can belong to several classes.

Therefore, a given shape could very well be both round and rod! The Open-

World assumption allows this type of interpretation: anything that is not

formally prohibited is considered possible.

Chapter 3 OWL ontologies

59

In our ontology of bacteria, we want to prohibit this: a given shape is

either round or rod, but cannot be both at the same time. For this, we must

declare the two classes Round and Rod as disjoint. Two disjoint classes

cannot have individuals in common.

The disjoint classes are declared in the “Description” panel of the

“Classes” tab. We will select the Rod class and then click the “+” button to

the right of the “Disjoint with” section and choose the Round class in the

“Class hierarchy” tab of the dialog box. You should get the following result:

The two classes are now disjoint. Note that it is not necessary to declare

the second class (Round) disjoint from the first (Rod): this is automatically

deduced from the previous declaration.

In the same way, the InSmallChain class must be declared disjoint

from the InLongChain class.

The Isolated, InPair, InCluster, and InChain classes must be declared

as pairwise disjoint: that is to say that any pair made up of two classes

from this list are disjoint. To do this, simply select one of the classes

Chapter 3 OWL ontologies

60

(e.g., Isolated), click the “+” button to the right of “Disjoint with”, and select

the other three classes simultaneously (by pressing the control key, not by

clicking three times the “+” button!). The result should be as follows:

Attention, concerning the subclasses of Grouping, the disjoint does

not mean that a given bacterium cannot be observed with two different

groupings (e.g., Isolated or InPair, like Pseudomonas). The disjoint only

means that a given grouping cannot be both Isolated and InPair, but it does

not prohibit a bacterium from having two distinct groupings, one of the

class Isolated and the other of the class InPair.

In the same way, the classes Bacteria, Shape, and Grouping must be

declared disjoint: for example, a geometric shape cannot be the same

thing as a bacterium! It may seem obvious to a human, but remember

that it is not to a machine. Ontologies seek to formalize knowledge

comprehensively, including the most obvious piece of knowledge.

Chapter 3 OWL ontologies

61

3.4.3  �Partitions
We have defined two classes of shapes, Round and Rod, which are now

disjoint. However, we have not excluded the existence of other shapes,

for example, triangular. Again, the Open-World assumption makes such

interpretations possible. However, there are only two possible shapes

for a bacterium: Round or Rod. We must declare that all Shape is either

Round or Rod: it is a partition (we will say that the classes Round and Rod

constitute a partition of the class Shape).

To do this, we select the Shape class, and, in the “Description” panel,

we click the “+” to the right of “SubClass Of”. This “+” button allows you to

add superclasses to the class; these can be named classes, but also OWL

logical constructors, like here. In the dialog box that appears, we select

the “Class expression editor” tab, and we enter the constructor “Round or

Rod”. You should obtain the following result:

This constructor “or” allows two classes to be linked with a logical

OR (also called a union, when we think in set logic). It means that the

Shape class is a subclass of the union of the Rod and Round classes.

Consequently, any shape is now either round or rod, and there are

therefore no other possible shapes.

In the same way, we must partition InChain (SubClass Of

“InSmallChain or InLongChain”) and Grouping (SubClass Of “Isolated or

InPair or InCluster or InChain”).

Chapter 3 OWL ontologies

62

3.4.4  �Data properties
We will now deal with the properties. In ontologies, unlike object-oriented

programming, properties are defined independently of classes. OWL

considers three categories of properties: data properties whose values are

data (numbers, texts, dates, Booleans, etc.), object properties whose values

are entities (i.e., ontology individuals), and annotation properties which

do not intervene in semantics or reasoning and can therefore mix data and

entities without restriction.

In Protégé, the “Data Properties” tab allows you to create data

properties. OWL supports inheritance between properties, in addition to

inheritance between classes; however, we will not use it here. Using the

and buttons, which work similarly to those for classes, we will create

two new data properties called “gram_positive” and “nb_colonies”. This

last property will not be really useful to describe bacteria, but it will serve

as an example of numeric data property.

You should arrive at the following result:

Chapter 3 OWL ontologies

63

Each data property can be configured by specifying:

•	 Its domain (“Domains (intersection)” in Protégé): This

is the class for which the property is defined.

•	 Its range (“Ranges”): This is the associated datatype. It

can be an integer or a real number, Boolean, character

string, date, and so on. Please note: to work with

Python and Owlready afterward, it is preferable to use

the types integer for integer numbers and decimal for

real numbers (refer to Table 4-1 for more information).

Attention, the range of an OWL property has nothing to

do with the Python range() function which allows you

to create lists of numbers (see 2.6).

•	 Its functional status (“Functional” checkbox): When a

property is functional, a given individual can have (at

most) only one value for this property. On the contrary,

if the property is not functional, a given individual can

have several values.

Domain and range are optional. It is possible to define several

domains and ranges; however, it is the intersection of the different

domains/ranges that is considered and not their union, which is often

not the desired result. For example, consider the property “has_shape”

and two classes, Bacteria and Viruses, of which individuals can have a

shape. If we define two domains, Bacteria and Virus, only individuals

belonging to both the Bacteria class and the Viruses class can have a

shape! If one wants to say that all Viruses and all Bacteria may have a

shape, it is necessary to define the domain as being the union of classes,

that is to say, “Bacterium or Virus”.

Chapter 3 OWL ontologies

64

Here, we will configure our two data properties as follows:

•	 gram_positive: Functional (check the box), domain:

Bacteria, range: Boolean

•	 nb_colonies: Functional (check the box), domain:

Bacteria, range: integer

3.4.5  �Object properties
In Protégé, the “Object Properties” tab allows you to create object

properties. Using the and buttons, we create four new object

properties called “has_shape”, “has_grouping”, “is_shape_of”, and “is_

grouping_of”, as in the following screenshot:

Each object property can be configured by specifying:

•	 Its domain (“Domains (intersection)” in Protégé): This

is the class for which the property is defined.

Chapter 3 OWL ontologies

65

•	 Its range (“Ranges (intersection)”): This is the class of

associated objects.

As before, if several domains or ranges are indicated,

it is their intersection that is considered.

•	 Its inverse property (“Inverse Of”): The inverse property

corresponds to existing relationships when the

property is read backward; if a property exists between

A and B, then its inverse property exists between B

and A. For example, the property “is_shape_of” is the

inverse of “has_shape”: if a bacterium X has the shape

A, then A is the shape of X. These inverse properties

will be useful in Python to navigate using the relation

has_shape/is_shape_of in both directions.

•	 Its functional status (“Functional” checkbox): When a

property is functional, a given individual can have (at

most) only one value for this property. On the contrary,

if the property is not functional, a given individual can

have several values.

•	 Its inverse functional status (“Inverse functional”

checkbox): A property is inverse functional if the

inverse property is functional. For example, the

property is_father_of is inverse functional: a man A can

be the father of several children B, C, D, and so on, but

for each of these children, A is their only father.

•	 Its transitive status (“Transitive” checkbox): A property

is transitive if it is possible to “chain” this property on

several objects. For example, the property “is_larger_

than” is transitive: if an individual A is larger than B and

if B is himself larger than C, then we can deduce that A

is larger than C.

Chapter 3 OWL ontologies

66

•	 Its symmetric status (“Symmetric” checkbox): A

property is symmetrical if it can be read indifferently in

both directions (it is thus its own inverse). For example,

the property “is_married_to” is symmetrical: if person

A is married to person B, then B is married to A.

•	 Its asymmetric status (“Asymmetric” checkbox): A

property is asymmetrical if it is never symmetrical. For

example, the property “has_father” is asymmetric: if

A has for father B, then it is not possible that B has for

father A.

•	 Its reflexive status (“Reflexive” checkbox): A property

is reflexive if it always applies between any object and

itself. For example, the property “knows” is reflexive:

each person X knows himself.

•	 Its irreflexive status (“Irreflexive” checkbox): A property

is irreflexive if it is never reflexive. For example, the

property “is_married_to” is irreflexive: one cannot be

married to him/herself.

Here, we will configure our object properties as follows:

•	 has_shape: Functional (check the box), domain:

Bacteria, range: Shape

•	 has_grouping: Nonfunctional (do not check the box),

domain: Bacteria, range: Grouping

•	 is_shape_of: Nonfunctional, domain: Form, range:

Bacterium, inverse: has_shape

•	 is_grouping of: Nonfunctional, domain: Grouping,

range: Bacteria, inverse: has_grouping

Chapter 3 OWL ontologies

67

Note that it is enough to define the inverse property of only one of the

two properties of the couple: for example, here, we do not need to specify

that has_shape has for inverse is_shape_of. This can be easily deduced

from the inverse property of is_shape_of.

3.4.6  �Restrictions
Now that we have created the properties, we can go back to the classes and

add restrictions, based on these properties.

The restrictions are added in the “Classes” tab of Protégé, by clicking

the “+” button to the right of “SubClass Of” in the “Description” section.

“SubClass Of” allows you to add superclasses to the class; it can be an OWL

named class created as before but also constructors, such as partitions (see

3.4.3) but also restrictions.

For example, the bacterium Pseudomonas has a Gram negative

staining. This results in OWL by the following restriction: the Boolean

property “gram_positive” must have the false value. This restriction is

assimilated to a class: it is the class of bacteria having the false value for the

“gram_positive” property. We can therefore define the Pseudomonas class

as a subclass of this restriction class.

OWL offers several categories of restrictions. The following restrictions

are used to model the relationships between two classes:

•	 Existential restriction (some): It represents the class of

individuals who have at least one relation of a certain

property with an individual belonging to a certain class.

This restriction is written “property some class” in

Protégé. For example, we have seen (Figure 3-1) that

Pseudomonas all have a Rod shape. Rod is a class,

which means that there might be several subtypes

Chapter 3 OWL ontologies

68

of the Rod shape (e.g., we could distinguish regular

and irregular rod shapes). This restriction will

therefore be written “has_shape some Rod”.

•	 Cardinality restrictions (exactly, min, max): It

represents the class of individuals who have a certain

number of relations of a certain property with an

individual belonging to a certain class. The number can

be exact (exactly) or a minimum (min) or maximum

(max) value.

These restrictions are written “property exactly

number class”, “property min number class”, or

“property max number class” in Protégé. It is a more

specific version of the existential restriction: an

existential restriction is equivalent to a restriction of

cardinality “min 1”.

•	 Universal restriction (only): It represents the class

of individuals who have only a relation of a certain

property with one (or more) individuals belonging to a

certain class (including its subclasses).

This restriction is written “property only class” in

Protégé. For example, the Pseudomonas is observed

only with a Rod shape, which we will write “has_

shape only Rod”.

Be careful not to confuse the universal restriction

“has_shape only Rod” with the previous existential

restriction, “has_shape some Rod”. The existential

restriction states that all Pseudomonas have at least

one Rod shape, while the universal restriction states

that all Pseudomonas have no other shape than

Chapter 3 OWL ontologies

69

Rod. It is quite common to combine two similar

restrictions, one universal and the other existential,

with the same target class.

On the other hand, we will not use a universal

restriction for grouping, because we have seen

previously that bacteria can occasionally present

other groups than their typical grouping.

The following restriction makes it possible to model a relation between

a class and an individual or a datatype value:

•	 Value restriction (value, sometimes called role-filler): It

represents the class of individuals who have a certain

value for a certain property.

This restriction is written “property value

individual/datatype” in Protégé. For example,

Pseudomonas is always associated with Gram

negative staining. This restriction will be written

“gram_positive value false”.

To add restrictions in Protégé, after clicking the “+” button, you can:

•	 Either manually enter the restriction in the “Class

expression editor” tab (tip: the tabulation key allows

you to complete a partial entry, e.g., “Bact” for

“Bacteria”),

•	 Or use the “Object restriction creator” or “Data

restriction creator” tab (depending on the type of

property) and choose the values from the drop-down

lists.

Chapter 3 OWL ontologies

70

To further describe the Pseudomonas class, we will add the following

restrictions:

•	 “has_shape some Rod”

•	 “has_shape only Rod”

•	 “gram_positive value false”1

Note that we have used an existential and a universal restriction for

the shape, since Rod is a class and not an individual or a data, and on

the contrary a value restriction for the Gram coloring, because false is a

datatype value.

1�Attention, in OWL, false and true are written without capital letters, while in
Python they are written with (i.e., False and True; see 2.4.2).

Chapter 3 OWL ontologies

71

3.4.7  �Union, intersection, and complement
OWL also allows the use of logical operators as constructors. These

operators have different names depending on whether they are considered

from a logical point of view or from a set theory point of view; however, it is

indeed the same thing. Three operators are available:

•	 Logical AND or intersection: These are individuals

belonging to several classes at the same time.

The intersection is written “class1 and class2” in

Protégé. Of course, more classes can be included in

the intersection, for example, “class1 and class2 and

class3”.

•	 Logical OR or union: These are individuals belonging

to a class among several.

The union is written “class1 or class2” in Protégé.

Similarly, unions are not limited to two classes, for

example, “class1 or class2 or class3”. For example,

the Pseudomonas can have two groupings: Isolated

and InPair. We can therefore build the union of

these two classes, which will be written “Isolated or

InPair”.

Furthermore, we have already used the union

previously, to express the partitions (see 3.4.3).

•	 Logical NOT or complement: These are individuals

who do not belong to a given class. The complement is

written “not class” in Protégé.

OWL also allows you to combine logical operators with restrictions and

classes, by grouping the different elements in parentheses.

Chapter 3 OWL ontologies

72

In order to refine the Pseudomonas class, we will add the following

superclass:

•	 “has_grouping some (Isolated or InPair)”

This restriction states that all Pseudomonas have at least one Isolated

or InPair grouping.

3.4.8  �Definitions (equivalent-to relations)
In the previous two sections, we used restrictions and constructors to

describe the properties of the class. However, this is not a definition in the

formal sense, because we have not fully and uniquely described the class.

For example, all Pseudomonas have a Rod shape, but not all bacteria with

a Rod shape are Pseudomonas!

OWL allows you to give a class a formal equivalence definition, via

an equivalence relation. Then, the defined classes allow reclassifying

individuals during automatic reasoning (which we will see later in

section 3.5 and in Chapter 7).

Chapter 3 OWL ontologies

73

For example, the Coccus class is the class of bacteria with a Round

shape (i.e., at least one Round shape and only Round shape). We can

therefore define it as follows:

•	 Coccus: “Bacterium and (has_shape some Round)

and (has_shape only Round)”

Note that, unlike the restrictions and constructors that we used

previously as a superclass for Pseudomonas, equivalences must be defined

“in one piece”. We cannot divide the definition into three parts “Bacteria”,

“has_shape some Round”, and “has_shape only Round” unless we change

its meaning entirely!

To add the restriction in Protégé, click the “+” button to the right

of “Equivalent To”, then manually enter the restriction in the “Class

expression editor” tab (again, you can use the tabulation key for

completion).

Chapter 3 OWL ontologies

74

Protégé marks the defined classes with a different icon: a brown

circle in which appears the symbol “≡” which means “equivalent to” in

description logics.

Similarly, we will define the Bacillus, Staphylococcus, and

Streptococcus classes as follows:

•	 Bacillus: “Bacterium and (has_shape some Rod)

and (has_shape only Rod)”

•	 Staphylococcus: “Bacterium and (has_shape some Round)

and (has_shape only Round)

and (has_grouping some InCluster)

and (gram_positive value true)”

•	 Streptococcus: “Bacterium and (has_shape some Round)

and (has_shape only Round)

and (has_grouping some InSmallChain)

and (has_grouping only (not Isolated))

and (gram_positive value true)”

For Streptococcus, the restriction “has_grouping only (not Isolated)”

indicates that Streptococcus can only have groupings other than Isolated:

it is never observed isolated.

3.4.9  �Individuals
The “Individuals” tab of Protégé allows you to navigate through

individuals and create new ones. In order to test our ontology, we will

create a few individuals. To do this, select the class in the “Class

Chapter 3 OWL ontologies

75

hierarchy” panel and then click the button in the “Members list”

panel (this panel lists the individuals belonging to the class). We will first

select the Round class and create a shape that we will call “round1”, as in

the following screenshot:

In the same way, we create an individual called “in_cluster1”,

belonging to the class “InCluster”.

Then, we create an individual called “unknown_bacterium”, belonging

to the “Bacterium” class. Finally, in the “Property assertions” panel, we

enter the relationships of this individual by clicking the “+” buttons to the

right of “Object property assertions” and “Data property assertions”. We

will enter the following relationships:

•	 Object property:

–– has_shape: round1

–– has_grouping: in_cluster1

Chapter 3 OWL ontologies

76

•	 Data property:

–– gram_positive: true

–– nb_colonies: 6

The following screenshot shows the expected result:

3.4.10  �Other constructs
OWL and Protégé also offer other constructors, of less frequent use.

•	 The set of individuals (also called one of) allows

creating a class restricted to a set of individuals. It is

written between braces: “{individual1, individual2, ...}”.

It can also be used to transform an individual into a

class (also called the singleton class because it has only

one instance/individual), as follows: “{individual}”.

Chapter 3 OWL ontologies

77

•	 The inverse of a property is written “inverse

(property)”. For example, “inverse (has_shape)” is

equivalent to “is_shape_of” in our ontology of bacteria.

This constructor is especially useful when the ontology

does not define named inverse properties.

•	 A property chain is written “property1 o property2” (the

circle corresponds to the lowercase letter “o”). They

are also called the property composition. They make it

possible to “chain” several properties, for example, “is_

shape_of o has_grouping” to pass directly from a shape

to the groupings of bacteria having this shape.

3.5  �Automatic reasoning
Now our bacteria ontology is ready!

To verify the absence of inconsistency in the ontology and test the

automatic reasoning, we can use the “Reasoner ➤ Start reasoner” menu

which will execute the automatic reasoner. Several reasoners are available;

I recommend the use of HermiT.

Once the reasoning has been carried out, individuals are reclassified

in Protégé. For example, the individual “unknown_bacterium” that

we had created was of the class Bacteria. We can see that it has been

reclassified into a new class: Staphylococcus (the new classes appear

on a yellow background in Protégé). Indeed, this bacterium satisfies the

conditions to be a Staphylococcus (round shape, grouped in clusters,

Gram + status).

Chapter 3 OWL ontologies

78

In addition, the reasoner also reorganized the classes. To observe this,

we will return to the Classes tab and click “Class hierarchy (inferred)”.

The class tree has been changed. We can see, for example, that the

Pseudomonas class has been reclassified as a subclass of the Bacillus class.

Indeed, all the individuals of this class satisfy the definition of the Bacillus

class, since Pseudomonas all have a Rod shape.

You may also try the following two experiences:

	 1.	 Create an individual of the Bacterium class, with

a Rod shape, grouped in pairs and/or isolated,

and a Gram negative status. This individual will

be reclassified in the Bacillus class, but not in

Pseudomonas. Indeed, we have not given a formal

Chapter 3 OWL ontologies

79

definition of the Pseudomonas class; the reasoner

cannot therefore deduce that such a bacterium

is a Pseudomonas. The absence of definition was

a desired choice when designing the ontology,

because Pseudomonas are not the only bacteria

with a rod shape, isolated or in pairs, and Gram

negative (see Figure 3-1).

	 2.	 Create an individual of the Bacterium class,

with a round shape, grouped in small chain, and

having a Gram positive status. This individual

will be reclassified in the Coccus class, but not in

Streptococcus. However, this class does contain

a definition! However, the individual we just

created does not fully meet the definition of the

Streptococcus class.

In fact, in the definition, we indicated “has_

grouping only (not Isolated)”. In the individual,

we indicated an InSmallChain grouping; however,

the property “has_grouping” is not functional, and

therefore several values are possible. The Open-

World assumption implies that the reasoner cannot

exclude the existence of another grouping, not

mentioned in the ontology, which could be Isolated.

Consequently, to be able to deduce that our

individual is a Streptococcus, it would be necessary

to indicate in the ontology that the individual has no

other groupings than those explicitly mentioned or

that he has no grouping of the class Isolated.

Chapter 3 OWL ontologies

80

On the other hand, in the formal definitions, we

also used universal constraints (“only”) on the “has_

shape” property. However, this does not prevent

the classification of individuals in the Coccus,

Bacillus, and Staphylococcus classes. Why? Because

the property is functional and the Round and Rod

classes are disjoint. Therefore, when a bacterium

has a Rod shape, it is impossible for it to have a

Round shape, and vice versa. On the contrary, the

property “has_grouping” is not functional, and

therefore this reasoning is no longer possible.

We will come back to this problem, and the solution

will be provided in 7.3.

3.6  �Modeling exercises
Here are some exercises to train you in ontology modeling:

	 1.	 In the bacteria ontology, add an individual of the

Staphylococcus class having a rod shape. Run the

reasoner; what do you observe?

	 2.	 Using the Protégé editor, extend the ontology of

bacteria by adding the catalase test. This biological

test helps to identify bacteria, and its result can be

positive or negative. The catalase test is positive

for Staphylococci and Pseudomonas, negative for

Streptococci.

	 3.	 Using the Protégé editor, extend the bacteria

ontology by adding the color of the bacteria.

Staphylococci are white or golden (this is the

Chapter 3 OWL ontologies

81

famous Staphylococcus aureus), Streptococci

are translucent, and Pseudomonas are generally

colored (that is to say, not white).

	 4.	 Using the Protégé editor, add a new class of bacteria:

Mycobacterium leprae (Hansen’s bacillus, which

causes leprosy). This species of bacteria is Gram

positive, rod shape, and isolated or grouped in pairs.

The catalase test is not relevant for this bacterium

because it is very difficult to grow in vitro. The color

is yellow. Finally, all of these characteristics are

sufficient to identify the bacteria.

	 5.	 In the Protégé editor, add an individual of the class

Bacterium, rod shape, isolated, and yellow in color.

Check that this individual is properly classified as

Mycobacterium leprae.

	 6.	 In the ontology of bacteria, add a disjunction

between the different subclasses of Bacteria

(Staphylococci, Streptococci, Pseudomonas, etc.).

Does this change the result of the reasoning on the

unknown bacterium?

	 7.	 An OWL ontology was carried out to structure

the drug interactions. This ontology is intended

to automatically detect interactions within

prescriptions prescribed by doctors, using a

reasoner. Could the Open-World assumption pose a

problem during the reasoning?

	 8.	 Using the Protégé editor, build an ontology

describing the books, the authors, and the editors.

You take inspiration from the object model

presented in 2.9.

Chapter 3 OWL ontologies

82

3.7  �Summary
In this chapter, we have presented OWL ontologies and the use of the

Protégé editor, through the example of a simple ontology of bacteria. We

have seen the main OWL constructs and also some frequently encountered

difficulties, such as those related to the Open-World assumption.

Chapter 3 OWL ontologies

83© Lamy Jean-Baptiste 2021
L. Jean-Baptiste, Ontologies with Python, https://doi.org/10.1007/978-1-4842-6552-9_4

CHAPTER 4

Accessing ontologies
in Python
In this chapter, we’ll see how to access the contents of an ontology in

Python using Owlready. We will use the ontology of bacteria that we

created in Chapter 3, as well as Gene Ontology, an ontology widely used in

bioinformatics.

4.1  �Importing Owlready
Owlready (version 2) is imported in Python as follows:

>>> from owlready2 import *

Note that it is better to use the import of the contents of the module

with “from owlready2 import *” rather than importing the module with

“import owlready2” (see 2.10.1), because Owlready redefines some Python

functions, such as the issubclass() function.

4.2  �Loading an ontology
Owlready allows you to load an OWL ontology into Python and to access

OWL entities as you would access “traditional” objects from a Python

module.

https://doi.org/10.1007/978-1-4842-6552-9_4#DOI

84

An ontology can be loaded in three different ways:

	 1.	 From its IRI (Internationalized Resource Identifier),

that is, an Internet address:

>>> onto = get_ontology("http://lesfleursdunormal.↲
fr/static/_downloads/bacteria.owl").load()

The ontology is then downloaded from the Internet

and loaded.

	 2.	 From a local file containing a copy of the ontology,

for example, under Linux/Unix/Mac:

>>> onto = get_ontology("/home/jiba/owlready/↲
bacteria.owl").load()

or under Windows:

>>> onto = get_ontology("C:\\owlready\\bacteria.↲
owl").load()

It is also possible to load the ontology from a local

copy into the current directory:

>>> onto = get_ontology("bacteria.owl").load()

The ontology is then loaded from an already existing

OWL file (you will obviously get an error if the file

enclosed in quotation marks does not exist; of

course, the filename in the preceding lines of code

are just examples). Be careful, under Windows, do

not forget to double the backslashes in filenames!

Chapter 4 Accessing ontologies in Python

85

	 3.	 From a Python file object obtained with the open(),

urlopen(), and other functions (see 2.4.8). This case

is much rarer, but sometimes useful (we will use it to

load DBpedia in 8.8.1). Here is an example:

>>> my_file = open("/path/to/file.owl")

>>> onto = get_ontology("http://lesfleursdunormal.↲
fr/static/_downloads/bacteria.owl")

>>> onto.load(fileobj = my_file)

Owlready currently supports the following file formats for reading:

•	 RDF/XML (most frequent file format for OWL

ontologies)

•	 OWL/XML

•	 N-Triples

Owlready maintains a cache of loaded ontologies: if the same ontology

is loaded a second time, the same ontology object will be returned without

having to reread the corresponding file. To force the reloading of an

ontology, we will use the optional reload parameter of the load() method:

>>> onto.load(reload = True)

The base_iri attribute of the ontology allows obtaining its IRI:

>>> onto.base_iri

'http://lesfleursdunormal.fr/static/_downloads/bacteria.owl#'

Note that Owlready automatically determined the separator, “#” or “/”,

to be placed after the IRI of the ontology and added it to the end (here, it

is “#”). However, it is also possible to explicitly include the separator at the

end of the IRI when calling get_ontology().

Chapter 4 Accessing ontologies in Python

86

4.3  �Imported ontologies
The ontology’s imported_ontologies attribute contains the list of other

ontologies it imports:

>>> onto.imported_ontologies

[]

Here, our bacteria ontology does not import any other ontology (hence

the preceding empty list). Imported ontologies are automatically loaded by

Owlready, recursively.

4.4  �Listing the content of the ontology
The ontology object has many methods for traversing the entities

contained in the ontology, according to their type. The following table

summarizes all of these methods:

Methods Entities traversed

individuals() All individuals

classes() All classes

properties() All properties

object_properties() All object properties

data_properties() All data properties

annotation_properties() All annotation properties

disjoints() All pairwise disjoints (including pairwise

distinct individuals and disjoint/distinct pairs)

disjoint_classes() All pairwise disjoint classes (including disjoint

pairs of classes)
(continued)

Chapter 4 Accessing ontologies in Python

87

Methods Entities traversed

disjoint_properties() All pairwise disjoint properties (including

disjoint pairs of properties)

different_individuals() All pairwise distinct individuals (including

distinct pairs of individuals)

rules() All SWRL rules

variables() All SWRL variables

general_axioms() All general axioms

These methods return generators (see 2.7); to display the content, use

the list() Python function, which converts the generator into a list:

>>> onto.classes()

<generator object _GraphManager.classes at 0x7f5a000fae58>

>>> list(onto.classes())

[bacteria.Bacterium, bacteria.Shape, bacteria.Grouping,

bacteria.Round, bacteria.Rod, bacteria.Isolated, bacteria.

InPair, bacteria.InCluster, bacteria.InChain, bacteria.

InSmallChain, bacteria.InLongChain, bacteria.Pseudomonas,

bacteria.Coccus, bacteria.Bacillus, bacteria.Staphylococcus,

bacteria.Streptococcus]

However, it is best not to use list() when the generator is present in a

loop, to improve performance:

>>> for c in onto.classes(): print(c.name)

Bacterium

Shape

Grouping

[...]

Chapter 4 Accessing ontologies in Python

88

4.5  �Accessing entities
When loading ontologies, Owlready analyzes the ontology file and

automatically translates it as an RDF graph in the form of “subject - verb -

object” triples (we will return in more detail on RDF in Chapter 11). This

RDF graph is stored in a database in the SQLite3 format, which is by

default in RAM (but the database can also be stored on the disk, as we

will see in 4.7). Then, Python objects for accessing the entities contained

in the ontology are created dynamically, on demand. Thus, if an ontology

includes 100 classes but only 1 is used in Python, only this class will be

created in Python, and the other 99 will remain at the RDF graph level in

the database.

The IRIS pseudo-dictionary allows access to any entity from its IRI. For

example, to access the individual “unknown_bacterium” whose complete

IRI is the following:

http://lesfleursdunormal.fr/static/_downloads/bacteria.

owl#unknown_bacterium

we will use

>>> IRIS["http://lesfleursdunormal.fr/static/_downloads/↲
bacteria.owl#unknown_bacterium"]

However, this notation is quite verbose. Owlready allows an easier

access to the entities present in the ontology, with dotted notation “.”, as

if the ontology was a Python module containing classes and objects. For

example, we can also access the individual “unknown_bacterium” as

follows:

>>> onto.unknown_bacterium

When the dotted notation is used, Owlready takes the base IRI of

the ontology (onto.base_iri, here “http://lesfleursdunormal.fr/

static/_downloads/bacteria.owl#”) and appends what appears after the

dot (here, “unknown_bacterium”) to obtain the IRI of the requested entity.

Chapter 4 Accessing ontologies in Python

http://lesfleursdunormal.fr/static/_downloads/bacteria.owl#unknown_bacterium
http://lesfleursdunormal.fr/static/_downloads/bacteria.owl#unknown_bacterium
http://lesfleursdunormal.fr/static/_downloads/bacteria.owl
http://lesfleursdunormal.fr/static/_downloads/bacteria.owl

89

Some IRIs may contain characters not supported by Python in attribute

names (e.g., spaces); in this case, the following alternative syntax can also

be used:

>>> onto["unknown_bacterium"]

Finally, some ontologies define entities whose IRI does not start with

the IRI of the ontology; in this case, it can be accessed via the IRIS pseudo-

dictionary or via namespaces (see 4.8).

The iri attribute of the entity contains its full IRI and the name

attribute the last part of the IRI (after the “#” character or the last “/”):

>>> onto.unknown_bacterium.iri

'http://lesfleursdunormal.fr/static/_downloads/↲
bacteria.owl#unknown_bacterium'

>>> onto.unknown_bacterium.name

'unknown_bacterium'

4.5.1  �Individuals
Individuals can be manipulated as if they were “normal” Python objects. In

particular, it is possible to test their membership in a given class with the

isinstance() function, as for any Python object:

>>> isinstance(onto.unknown_bacterium, onto.Bacterium)

True

The __class__ attribute allows obtaining the class of an object:

>>> onto.unknown_bacterium.__class__

bacteria.Bacterium

However, in ontologies, an object can belong to several classes

simultaneously, which is not allowed in Python. In this case, Owlready

automatically creates a “merge” class that inherits from all the individual’s

Chapter 4 Accessing ontologies in Python

90

classes. In order to obtain the list of the classes of the individual, it is

therefore preferable to use the is_a attribute (which also contains the

restrictions and the logical constructors, if any):

>>> onto.unknown_bacterium.is_a

[bacteria.Bacterium]

Finally, the equivalent_to attribute contains the list of equivalent

individuals (often called “same as” in OWL or in the Protégé editor).

>>> onto.unknown_bacterium.equivalent_to

[]

Here, the list is empty because our unknown bacterium has not been

defined as equivalent to any other.

4.5.2  �Relations
The relations of an individual can be obtained via the dotted notation

pointed “individual.attribute”, for example:

>>> onto.unknown_bacterium.gram_positive

True

>>> onto.unknown_bacterium.has_shape

bacteria.round1

>>> onto.unknown_bacterium.has_grouping

[bacteria.in_cluster1]

Relations return a list of values (as for the attribute “has_grouping”

earlier) or a single value if the property is functional (as for the other two

attributes earlier).

Chapter 4 Accessing ontologies in Python

91

The first() method of lists of values can be used to retrieve the first

result (defaulting to None when the list is empty).

>>> onto.unknown_bacterium.has_grouping.first()

bacteria.in_cluster1

In addition, Owlready automatically takes into account inverse

properties when querying for relations. For example, we can ask which

bacterium is associated with the grouping “in_cluster1”:

>>> onto.in_cluster1.is_grouping_of

[bacteria.unknown_bacterium]

The relation “in_cluster1 is_grouping_of unknown_bacterium” does

not appear in the ontology (we did not enter it in Protégé in Chapter 3).

However, it is easily deduced from the relation “unknown_bacterium has_

for_grouping in_cluster1” that we entered.

The values present in the ontology are automatically translated into

Python datatypes (int, float, str, etc.), according to the correspondence

given in Table 4-1.

When the property names are prefixed with “INDIRECT_”, Owlready

also returns the indirectly defined relations, taking into account:

	 1.	 Transitive, symmetrical, and reflexive properties

	 2.	 Inheritance relation between properties (i.e.,

subproperties)

	 3.	 The classes to which the individual belongs

(existential or value restriction on the class)

	 4.	 Inheritance between classes (existential or value

restriction on superclasses)

	 5.	 Equivalence relations (classes and equivalent

properties and identical individuals)

Here is an example:

Chapter 4 Accessing ontologies in Python

92

Table 4-1.  Correspondence between OWL and Python + Owlready

datatypes. When multiple OWL datatypes correspond to the same

Python type, the OWL datatype in bold is the one used by Owlready

by default when saving ontologies

OWL Python + Owlready

XMLSchema#integer int

XMLSchema#byte

XMLSchema#short

XMLSchema#int

XMLSchema#long

XMLSchema#unsignedByte

XMLSchema#unsignedShort

XMLSchema#unsignedInt

XMLSchema#unsignedLong

XMLSchema#negativeInteger

XMLSchema#nonNegativeInteger

XMLSchema#positiveInteger

XMLSchema#boolean bool

XMLSchema#decimal float

XMLSchema#double

XMLSchema#float

owl#real

XMLSchema#string str

(continued)

Chapter 4 Accessing ontologies in Python

93

Table 4-1.  (continued)

OWL Python + Owlready

XMLSchema#normalizedString owlready2.normstr

XMLSchema#anyURI

XMLSchema#Name

PlainLiteral str (if no language is specified)
owlready2.locstr (if a language is

specified, see 8.2)

XMLSchema#dateTime datetime.datetime

XMLSchema#date datetime.date

XMLSchema#time datetime.time

>>> onto.unknown_bacterium.INDIRECT_has_grouping

[bacteria.in_cluster1]

The get_properties() method returns a generator listing all the

properties for which the individual has at least one relation, for example:

>>> list(onto.unknown_bacterium.get_properties())

[bacteria.has_shape, bacteria.has_grouping,

bacteria.gram_positive, bacteria.nb_colonies]

Finally, the get_inverse_properties() method does the same with

inverse properties and returns pairs of the form “(subject, property)”, for

example:

>>> list(onto.round1.get_inverse_properties())

[(bacteria.unknown_bacterium, bacteria.has_shape)]

Chapter 4 Accessing ontologies in Python

94

4.5.3  �Classes
Classes can be obtained in the same way as other entities:

>>> onto.Bacterium

The ontology classes are real Python classes and can be used as

such. For example, the issubclass() function tests whether a class is a

descendant (subclass, sub-subclass, etc.) of another:

>>> issubclass(onto.Coccus, onto.Bacterium)

True

The __bases__ attribute is used to obtain the list of parent classes.

However, as for individuals, it is best to use the is_a attribute (which also

contains the restrictions and the logical constructors):

>>> onto.Coccus.is_a

[bacteria.Bacterium]

The subclasses() method gets the list of child classes (note that

subclasses() returns a generator, hence the use of list()):

>>> list(onto.Bacterium.subclasses())

[bacteria.Pseudomonas, bacteria.Coccus, bacteria.Bacillus]

The ancestors() and descendants() methods are used to obtain the

set of ancestor classes (parents, grandparents, etc.) and descendant classes

(children, grandchildren, etc.), respectively.

>>> onto.Bacterium.descendants()

{bacteria.Bacterium, bacteria.Pseudomonas, bacteria.Streptococcus,

bacteria.Staphylococcus, bacteria.Bacillus, bacteria.Coccus}

Chapter 4 Accessing ontologies in Python

95

By default, the starting class is included in the results (this is why we

find bacteria.Bacterium in the previous result). The optional argument

include_self removes the starting class. It is used as follows:

>>> onto.Bacterium.descendants(include_self = False)

{bacteria.Pseudomonas, bacteria.Streptococcus,

bacteria.Staphylococcus, bacteria.Bacillus, bacteria.Coccus}

The instances() method is used to obtain the list of individuals

belonging to a class (including instances of child and descendant classes):

>>> onto.Bacterium.instances()

[bacteria.unknown_bacterium]

The direct_instances() method works in the same way but is limited

to direct instances.

The equivalent_to attribute contains the list of equivalent classes:

>>> onto.Streptococcus.equivalent_to

[bacteria.Bacterium

& bacteria.has_shape.some(bacteria.Round)

& bacteria.has_shape.only(bacteria.Round)

& bacteria.has_grouping.some(bacteria.InSmallChain)

& bacteria.has_grouping.only(Not(bacteria.Isolated))

& bacteria.gram_positive.value(True)]

We obtain the formal definition that we entered in Chapter 3 with the

different OWL constructors; we will see how to manipulate these in Chapter 6.

As before, it is possible to prefix by “INDIRECT_” to obtain the indirect

equivalences (e.g., if A is equivalent to B and B is equivalent to C, we will

obtain that A is equivalent to both B and C).

>>> onto.Streptococcus.INDIRECT_equivalent_to

Finally, disjoints() and constructs() methods return generators

listing all disjoints and constructors referencing the class, respectively.

Chapter 4 Accessing ontologies in Python

96

4.5.4  �Existential restrictions
Owlready allows you to access existential restrictions (those of type some

and value) as if they were “class properties”, using the dotted notation

“Class.property”, for example, on the class Streptococcus:

>>> onto.Streptococcus.gram_positive

True

>>> onto.Streptococcus.has_grouping

[bacteria.InSmallChain]

Owlready also provides detailed access to all the constructors used in

the definition of a class (see 6.2).

4.5.5  �Properties
Superproperties, subproperties, ancestors, descendants, and equivalent

properties can be obtained in the same way as for classes.

The domain and range attributes are used to obtain the domain and

range of the property. Be careful, these attributes each return a list. When

multiple values are present, OWL considers that the domain or the range is

the intersection of the different values.

>>> onto.has_grouping.domain

[bacteria.Bacterium]

>>> onto.has_grouping.range

[bacteria.Grouping]

The range_iri attribute is used to get the range of the property as a

list of IRIs, which is useful for distinguishing the different types of data

supported by OWL (e.g., XMLSchema#decimal, XMLSchema#double, and

XMLSchema#float, while the range attribute is the Python float type for

all three in Owlready, Python having only one type of floating number).

Chapter 4 Accessing ontologies in Python

97

The python_name attribute is used to change the name under which

a property is accessible with the dotted notation. This allows you to use a

name more “in the spirit” of Python. Indeed, the OWL properties are often

called “has_...”, whereas in Python the attribute names rarely start like this.

Similarly, in Python, we prefer to put a plural “s” at the end of an attribute

containing a list of values. For example, we can change the name of the

property “has_grouping” to “groupings” as follows:

>>> onto.has_grouping.python_name = "groupings"

>>> onto.unknown_bacterium.groupings

[bacteria.in_cluster1]

Note that the name of the property is only changed when using the

dotted notation in Python. On the other hand, the object property remains

accessible as an onto.has_grouping, and its IRI does not change. It is

possible to return to the previous name as follows:

>>> onto.has_grouping.python_name = onto.has_grouping.name

The get_relations() method returns a generator listing all (subject,

object) pairs for the property, for example:

>>> for subject, object in onto.has_grouping.get_relations():

... print(subject, "has for grouping" , object)

bacteria.unknown_bacterium has for grouping bacteria.in_cluster1

It is also possible to obtain the value of a property for a given individual

with the alternative syntax “property[individual]”. Unlike the usual syntax

“individual.property”, this alternative syntax always returns a list of values

(even in the case of a functional property), which may be useful in some

situations:

>>> prop = onto.gram_positive

>>> prop[onto.unknown_bacterium]

[True]

Chapter 4 Accessing ontologies in Python

98

This syntax can also be useful if the property name contains invalid

characters in Python (e.g., “.”) or if the ontology includes several properties

with different IRIs but ending with the same name. The following example

shows how to access a property with an invalid name in Python:

onto["my.propertyindividual"]

4.6  �Searching for entities
The search() method of the ontology object makes it possible to search

for entities from their IRI and/or their relations. When searching, the

following keywords are usable and combinable with each other:

•	 iri to search by IRI

•	 type to search for individuals of a given class

•	 subclass_of to search for descendant classes of a

given class

•	 is_a to search for both individuals and descendant

classes of a given class

•	 any property name to search by relation

In addition, in strings, “*” can be used as a wildcard. The following

example searches for all entities whose IRI contains “Coccus”:

>>> onto.search(iri = "*Coccus*")

[bacteria.Coccus]

By default, the search is case-sensitive. The _case_sensitive

parameter is used to change this behavior, for example:

>>> onto.search(iri = "*Coccus*", _case_sensitive = False)

[bacteria.Coccus, bacteria.Staphylococcus, bacteria.

Streptococcus]

Chapter 4 Accessing ontologies in Python

99

This time, we find more results, because “Staphylococcus” and

“Streptococcus” do contain “coccus”, but with a lowercase “c” and not an

uppercase one.

The result returned by search() looks like a Python list and can be

used as a list. However, it is not a classic list; we can check it with the __

class__ attribute:

>>> r = onto.search(iri = "*Coccus*", _case_sensitive = False)

>>> r.__class__

<class 'owlready2.triplelite._SearchList'>

It is a special list, called a “lazy” list, whose elements are only

determined at the very last moment. For example, in the following code,

the first line creates the “lazy” list, but the search is not performed yet.

It will only be done at the very last moment, when we ask to access the

contents of the list (e.g., with print() for the display).

>>> r = onto.search(iri = "*Coccus*", _case_sensitive = False)

>>> print(r) # The search is only performed here

[bacteria.Coccus, bacteria.Staphylococcus, bacteria.

Streptococcus]

The search() method can accept multiple parameters. The following

example searches for all individuals belonging to the Bacterium class with

a positive Gram (= having the gram_positive relationship to True):

>>> onto.search(type = onto.Bacterium, gram_positive = True)

[bacteria.unknown_bacterium]

The string “*” can be used as a “wildcard”, that is to say, to search

for the existence of a relation, whatever the associated value (including

nontextual values: numbers, objects, etc.). The following example searches

for all bacteria for which Gram status is known (whatever it is):

>>> onto.search(type = onto.Bacterium, gram_positive = "*")

[bacteria.unknown_bacterium]

Chapter 4 Accessing ontologies in Python

100

A list of several values can also be used as an argument to search(). In

this case, only the entities having a relationship with each of the elements

of the list are returned. Here is an example (you will have to create the

individuals isolated1 and by_two1 in the ontology to test this example):

>>> onto.search(type = onto.Bacterium,↲
has_grouping = [onto.isolated1, onto.by_two1])

It is also possible to search for individuals having no relation, using the

None value. For example, we can search for bacteria that have no shape as

follows:

>>> onto.search(type = onto.Bacterium, has_shape = None)

To search in all ontologies (in case several have been loaded), it is

possible to search the default “world”, default_world, as follows:

>>> default_world.search(iri = "*Coccus*")

Searches with search() can also be nested. In this case, Owlready

automatically combines the searches to make a single optimized SQL

query in the quadstore. The following example searches for all bacteria

with an InChain grouping (including InSmallChain and InFilament). For

this, we nest two calls to search(): one to find InChain groupings and

another to find the associated bacteria.

>>> onto.search(type = onto.Bacterium,↲
has_grouping = onto.search(type = onto.InChain))

Finally, the search_one() method works in the same way as search()

but returns only one result, instead of a list.

To perform more complex searches, it is possible to use the SPARQL

query language by combining Owlready with RDFlib (see section 11.3).

Chapter 4 Accessing ontologies in Python

101

4.7  �Huge ontologies and disk cache
Gene Ontology (GO) is a widely used ontology in bioinformatics that is

quite voluminous (nearly 200 MB). The loading of GO, using the following

command, takes several tens of seconds or even a few minutes, depending

on the power of the computer and the download time of the OWL file:

>>> go = get_ontology("http://purl.obolibrary.org/obo/go.owl").↲
load()

By default, Owlready stores the quadstore containing the ontology in

RDF format in RAM. At the end of the execution of the Python program,

the quadstore is lost, and the OWL file must be reloaded at each new

execution. In order to avoid these long reloads, it is possible to place the

quadstore on the disk, using the default_world.set_backend() method.

Then, default_world.save() will save it, for example:

>>> default_world.set_backend(filename = "quadstore.sqlite3")

>>> go = get_ontology("http://purl.obolibrary.org/obo/go.owl").↲
load()

>>> default_world.save()

Here, we used a relative file path for the quadstore; we could have used

an absolute path (e.g., “/home/jiba/owlready/quadstore.sqlite3” on

Linux/Mac or “C:\\quadstore.sqlite3” on Windows).

To load the ontologies from the quadstore, during a new execution of

Python, it is enough to redefine the quadstore file and to load the ontology,

by using the same three lines as before (the line default_world.save()

can be ignored or kept; it will have no effect because there is no change to

save). The loading is then immediate, because the ontology is recovered

directly from the quadstore, without any operation for downloading or

parsing the OWL file.

Chapter 4 Accessing ontologies in Python

102

Attention, if several ontologies are loaded in memory (e.g., the

ontology of preceding bacteria and GO), all the ontologies are stored in the

same quadstore and thus saved in the same file.

Finally, the default_world.save() method is used to save the

changes made in the quadstore (this method corresponds to the “commit”

operation on the database, so it has a cost of almost zero performance

if there are no changes to record, even for very large ontologies). If

the changes are not saved, they will be lost at the end of the program

execution.

4.8  �Namespaces
Some ontologies define entities in a namespace that is not their own.

This is the case with GO: the GO IRI is “http://purl.obolibrary.org/

obo/go.owl”, but GO entities have IRIs that start with “http://purl.

obolibrary.org/obo/” (without the “go.owl” suffix). Consequently, it is

not possible to use the go ontology object to access the entities with the

dotted notation:

>>> go.GO_0035065

None

Indeed, the preceding line corresponds to the IRI “http://purl.

obolibrary.org/obo/go.owl#GO_0035065”, while the expected IRI of the

concept is “http://purl.obolibrary.org/obo/GO_0035065” (so without

the “go.owl” suffix).

To access GO entities, it is possible to use the IRIS global pseudo-

dictionary (see 4.5). Another option is to create a namespace for the

“http://purl.obolibrary.org/obo/” IRI, as follows:

>>> obo = get_namespace("http://purl.obolibrary.org/obo/")

Chapter 4 Accessing ontologies in Python

http://purl.obolibrary.org/obo/go.owl
http://purl.obolibrary.org/obo/go.owl
http://purl.obolibrary.org/obo/
http://purl.obolibrary.org/obo/
http://purl.obolibrary.org/obo/go.owl#GO_0035065
http://purl.obolibrary.org/obo/go.owl#GO_0035065
http://purl.obolibrary.org/obo/GO_0035065
http://purl.obolibrary.org/obo/

103

The obo namespace can then be used to access the entities with the

dotted notation:

>>> obo.GO_0035065

obo.GO_0035065

>>> obo.GO_0035065.label

['regulation of histone acetylation']

4.9  �Modifying entity rendering as text
By default, Owlready displays the name of the entity, preceded by a period

and the last piece of the IRI (without the extension “.owl”, if present).

However, when the names of the entities are arbitrary identifiers, this

display is not satisfactory, as in the following example:

>>> obo.GO_0035065

obo.GO_0035065

The global function set_render_func() allows redefining the way

in which Owlready renders entities. In the following example, we use the

“label” annotation property to render or, failing that, the name of the entity

(i.e., its identifier):

>>> def my_rendering(entity):

... return entity.label.first() or entity.name

>>> set_render_func(my_rendering)

>>> obo.GO_0035065

regulation of histone acetylation

In GO, almost all entities are classes (and not individuals; this is a fairly

common practice in biomedical ontologies). As seen previously (in 4.5.4),

it is possible to access the existential restrictions of these classes with the

dotted notation, as in the following example (where RO_0002211 is the

name GO for the “regulates” property):

Chapter 4 Accessing ontologies in Python

104

>>> obo.GO_0035065.RO_0002211

[histone acetylation]

However, it is sometimes laborious to use property names when these

are arbitrary codes, as before. The next three lines allow you to use the

property labels instead of their name (after replacing the spaces with

underscores):

>>> for prop in go.properties():

... if prop.label:

... �prop.python_name = prop.label.first().replace(" " ,

"_")

This makes it easier to query the ontology:

>>> obo.GO_0035065.regulates

[histone acetylation]

Be careful, however, because GO does not guarantee the conservation

of labels from one version to another! This tip is therefore to be avoided in

programs designed to last.

As before, it is possible to prefix the property name with "INDIRECT_”

to also obtain the restrictions defined indirectly, for example, those which

are inherited from superclasses:

>>> obo.GO_0035065.INDIRECT_regulates

[cellular component organization,

 metabolic process,

 protein metabolic process,

 protein acetylation,

 histone acetylation,

 ...]

Chapter 4 Accessing ontologies in Python

105

4.10  �Local directory of ontologies
Owlready can also work with one or more directories containing local

copies. Local copies will be used as a priority, instead of downloading

ontologies from the Internet. The local directories must be filled in the

global variable onto_path, in the following way under Unix/Linux/Mac:

>>> onto_path.append("/home/jiba/owlready")

>>> onto = get_ontology("http://lesfleursdunormal.fr/static/↲
_downloads/bacteria.owl#").load()

or under Windows:

>>> onto_path.append("C:\\owlready")

>>> onto = get_ontology("http://lesfleursdunormal.fr/static/↲
_downloads/bacteria.owl#").load()

The global variable onto_path contains a list of local ontology

directories; it is empty by default. Before downloading an ontology from

the Internet, Owlready checks whether a local copy is not available in one

of the directories in onto_path. In the previous example, if a “bacteria.

owl” file is present in the cache directory (“/home/jiba/owlready” in the

Linux/Unix/Mac example or “C:\\owlready” in the Windows example),

this file will be used. Otherwise, the ontology will be downloaded from the

Internet.

onto_path works similarly to the sys.path list which allows Python

to find Python modules and packages or to the equivalent CLASSPATH

environment variable in Java.

In addition, the optional parameter only_local allows you to prohibit

the loading of an ontology from the Internet, as in the following example:

>>> onto = get_ontology("http://lesfleursdunormal.fr/static/↲
_downloads/bacteria.owl#").load(only_local = True)

Chapter 4 Accessing ontologies in Python

106

Local ontology directories are particularly useful if you want to use

different versions of ontologies found on the Internet, for example, older

versions or in “exotic” formats. In particular, some ontologies available

online are in formats that Owlready cannot read. Using a local directory,

it is possible to provide Owlready with versions of these ontologies

previously translated into RDF/XML or N-Triples (e.g., manually via

Protégé).

4.11  Reloading an ontology in
the quadstore
When using local files (local ontology directory as before or loading an

ontology from a local OWL file) and a quadstore stored on the disk, the

question of updating ontologies in the quadstore arise. When the local

OWL file is modified, the ontology must be updated in the quadstore.

This can be done with the reload option of the load() method seen

previously, but also with the reload_if_newer option which reloads

the ontology only if the OWL file is newer than the version stored in the

quadstore:

>>> go = get_ontology("http://purl.obolibrary.org/obo/↲
go.owl#").load(reload_if_newer = True)

Please note reloading the ontology from the OWL file overwrites the

version stored in the quadstore. You must therefore avoid simultaneously

modifying the OWL file of the ontology and its version stored in the

quadstore!

Chapter 4 Accessing ontologies in Python

107

4.12  Example: creating a dynamic website
from an ontology
In this example, we are going to generate a dynamic website to present the

classes and individuals of an ontology. For this, we will use Owlready as

well as Flask, a Python module which allows you to easily create websites.

Flask allows you to associate a URL path on a website with a Python

function; when this path is requested, the function is called, and it must

return the corresponding HTML page. The path is defined by adding

@app.route('/path') on the line preceding the function (it is a Python

function decorator). The paths can contain parameters (indicated between

angle brackets <...> in the path) which will be passed as arguments to the

Python function.

The following function shows a simple example of a web page

with Flask:

from flask import Flask, url_for

app = Flask(__name__)

@app.route(’/path/<parameter>’)

def generate_web_page(parameter):

 html = "<html><body>"

 html += "The value of the parameter is: %s % parameter"

 html += "</body></html>"

 return html

The full program of our website is as follows:

File dynamic_website.py

from owlready2 import *

onto = get_ontology("bacteria.owl").load()

from flask import Flask, url_for

app = Flask(__name__)

Chapter 4 Accessing ontologies in Python

108

@app.route('/')

def ontology_page():

 html = """<html><body>"""

 html += """<h2>'%s' ontology</h2>""" % onto.base_iri

 html += """<h3>Root classes</h3>"""

 for Class in Thing.subclasses():

 html += """<p>%s</p>""" %↲
(url_for("class_page", iri = Class.iri), Class.name)

 html += """</body></html>"""

 return html

@app.route('/class/<path:iri>')

def class_page(iri):

 Class = IRIS[iri]

 html = """<html><body><h2>'%s' class</h2>""" % Class.name

 html += """<h3>superclasses</h3>"""

 for SuperClass in Class.is_a:

 if isinstance(SuperClass, ThingClass):

 html += """<p>%s</p>""" %↲
(url_for("class_page", iri = SuperClass.iri), SuperClass.name)

 else:

 html += """<p>%s</p>""" % SuperClass

 html += """<h3>equivalent classes</h3>"""

 for EquivClass in Class.equivalent_to:

 html += """<p>%s</p>""" % EquivClass

 html += """<h3>Subclasses</h3>"""

 for SubClass in Class.subclasses():

 html += """<p>%s</p>""" %↲
(url_for("class_page", iri = SubClass.iri), SubClass.name)

Chapter 4 Accessing ontologies in Python

109

 html += """<h3>Individuals</h3>"""

 for individual in Class.instances():

 html += """<p>%s</p>""" %↲
(url_for("individual_page", iri = individual.iri),↲
individual.name)

 html += """</body></html>"""

 return html

@app.route('/individual/<path:iri>')

def individual_page(iri):

 individual = IRIS[iri]

 �html = """<html><body><h2>'%s' individual</h2>""" %↲
individual.name

 html += """<h3>Classes</h3>"""

 for Class in individual.is_a:

 html += """<p>%s</p>""" %↲
(url_for("class_page", iri = Class.iri), Class.name)

 html += """<h3>Relations</h3>"""

 if isinstance(individual, onto.Bacterium):

 html += """<p>shape = %s</p>""" % individual.has_shape

 html += """<p>grouping = %s</p>""" % individual.has_grouping

 if individual.gram_positive == True:

 html += """<p>Gram +</p>"""

 elif individual.gram_positive == False:

 html += """<p>Gram -</p>"""

 html += """</body></html>"""

 return html

import werkzeug.serving

werkzeug.serving.run_simple("localhost", 5000, app)

Chapter 4 Accessing ontologies in Python

110

In this program, we have defined three functions, each associated with

a URL path and corresponding to three different types of pages on the

website:

•	 The “ontology” page (path “/” which corresponds to the

root of the website) displays the IRI of the ontology and

lists the root classes (i.e., direct subclasses of Thing).

For each class, we display its name in an Internet link

which points to the corresponding class page. The

URLs of these links are obtained with the url_for()

function from Flask, which returns the URL for a given

web page from the name of the corresponding function

and any parameters.

•	 The “class” page (path “/class/IRI_of_the_class”)

displays the name of the requested class and lists its

superclasses, its equivalent classes, its subclasses, and

its individuals. For superclasses, we display the name

of the superclass with a link as previously when it is

an entity (i.e., an instance of ThingClass) or simply

the class (without links) when it is an OWL logical

constructor (e.g., a restriction).

•	 The individual page (path “/individual/IRI_of_

individual”) displays the name of the requested

individual and lists its classes. If it is a bacterium, we

also display its shape, its grouping, and its Gram status.

The last two lines are used to launch the website with the Werkzeug

server (a Python module installed by Flask). Once the program

has been executed, the website can be consulted at the address

“http://127.0.0.1:5000” in your browser. The following screenshots

show the “ontology” and “class” pages of the dynamic website:

Chapter 4 Accessing ontologies in Python

111

Chapter 4 Accessing ontologies in Python

112

4.13  �Summary
In this chapter, you have learned how to use Owlready for accessing and

reading OWL ontologies in Python. We have used the bacteria ontology

designed in the previous chapter, but also a much larger and complex

resource, Gene Ontology. Finally, we have seen how to use ontology in

Flask-based dynamic websites.

Chapter 4 Accessing ontologies in Python

113© Lamy Jean-Baptiste 2021
L. Jean-Baptiste, Ontologies with Python, https://doi.org/10.1007/978-1-4842-6552-9_5

CHAPTER 5

Creating and
modifying ontologies
in Python
In this chapter, we will see how to create a de novo ontology in Python and

how to modify or enrich an already existing ontology. Almost all of the

objects, attributes, and lists of Owlready seen in the previous chapter can

be modified: when the value of these is modified, Owlready automatically

updates the corresponding RDF triples in the quadstore (however, do not

forget to save it if it is stored on the disk; see 4.7).

5.1  �Creating an empty ontology
The get_ontology() function allows you to create an empty ontology from

its IRI (it is preferable to indicate the separator, “#” or “/”, at the end of the

IRI, because Owlready cannot guess it since the ontology is empty!):

>>> from owlready2 import *

>>> onto = get_ontology("http://test.org/onto.owl#")

Note that, contrary to what we did in Chapter 4, we did not call the

load() method. This was in charge of loading the ontology; if load() is not

called, the ontology therefore remains empty.

https://doi.org/10.1007/978-1-4842-6552-9_5#DOI

114

Subsequently, when creating OWL entities or RDF triples, it is

important to indicate in which ontology they are placed. In fact, unlike the

Python classes that belong to the module in which they are created, OWL

entities do not “belong” specifically to an ontology: a class can be defined

in an ontology A and then enriched in an ontology B, for example, with

new parent classes.

Owlready uses the syntax “with ontology: ...” to indicate the ontology

that will receive the new RDF triples:

with onto:

 <Python code>

All RDF triples created in the code block “<Python code>” placed

inside the with...: block will be added to the ontology onto.

5.2  �Creating classes
To create an OWL class, simply create a Python class that inherits from

Thing. For example, we can create the Bacterium, Shape, and Grouping

classes as follows:

>>> with onto:

... class Bacterium(Thing): pass

... class Shape(Thing): pass

... class Grouping(Thing): pass

Note that, since these classes are empty (that is to say that they have no

method), we must use the keyword pass (see 2.9).

In order to observe what is happening inside the Owlready quadstore,

we can use the function set_log_level() which modifies the level of

logging. By setting the level to its maximum (9), Owlready indicates the

RDF triples added, deleted, or modified in the quadstore. Here is an

example:

Chapter 5 Creating and modifying ontologies in Python

115

>>> set_log_level(9)

>>> with onto:

... class TestClass(Thing): pass

* Owlready2 * ADD TRIPLE http://test.org/onto.owl#TestClass↲
 http://www.w3.org/1999/02/22-rdf-syntax-ns#type↲
 http://www.w3.org/2002/07/owl#Class

* Owlready2 * ADD TRIPLE http://test.org/onto.owl#TestClass↲
 http://www.w3.org/2000/01/rdf-schema#subClassOf↲
 http://www.w3.org/2002/07/owl#Thing

Here, the creation of the TestClass class triggered the addition of two

RDF triples: the first indicates that TestClass is an OWL class, and the

second indicates that TestClass inherits from Thing.

To stop logging, we will simply do:

>>> set_log_level(0)

We can also create new OWL classes by inheriting from a class that

itself inherits from Thing, for example, the Shape or the Grouping classes:

>>> with onto:

... class Rod(Shape): pass

... class Isolated(Grouping): pass

... class InPair(Grouping): pass

The IRI of the created classes is obtained by concatenating the base IRI

of the ontology with the name of the class:

>>> Bacterium.iri

'http://test.org/onto.owl#Bacterium'

Chapter 5 Creating and modifying ontologies in Python

116

The parent class can also come from another ontology, such as the

Bacterium class from the ontology of bacteria (which must be previously

loaded, here in the ontology onto_chap3 variable, from an OWL file

“bacteria.owl” located in the current directory; make sure that you are

running the example in the working directory used in Chapter 3):

>>> onto_chap3 = get_ontology("bacteria.owl").load()

>>> with onto:

... class MyBacteriumClass(onto_chap3.Bacterium): pass

Multiple inheritance is possible and can be used as in Python. The

following example creates the Ribozyme class, which inherits both RNA

and enzyme (a ribozyme being an RNA that behaves like an enzyme):

>>> with onto:

... class RNA(Thing): pass

... class Enzyme(Thing): pass

... class Ribozyme(RNA, Enzyme): pass

5.2.1  �Creating classes dynamically
The Python types module allows you to create classes dynamically, when

the name of the class is not known at the time of writing the program, but

is available in a variable at runtime. Here is an example:

>>> import types

>>> class_name = "MyClass"

>>> SuperClasses = [Thing]

>>> with onto:

... �NewClass = types.new_class(class_name, tuple↲
(SuperClasses))

Please note the new_class() function expects a tuple with the parent

classes, not a list! This is why in the example we used the tuple() function

to transform the list into a tuple.

Chapter 5 Creating and modifying ontologies in Python

117

5.3  �Creating properties
In Owlready, properties are assimilated to classes, because OWL properties

behave similarly to classes (with in particular inheritance support). In fact,

OWL properties are actually “classes of relationship”. Properties are created

by defining a class that inherits from DataProperty, ObjectProperty,

or AnnotationProperty. In addition, the classes FunctionalProperty,

InverseFunctionalProperty, TransitiveProperty, SymmetricProperty,

AsymmetricProperty, ReflexiveProperty, and IrreflexiveProperty can

be used as additional superclasses (using multiple inheritance) in order to

create functional, inverse functional, transitive, and other properties.

The domain and range class attributes are used to query or define the

domain and the range of the property, in the form of a list.

The following example creates the functional functional property

has_shape:

>>> with onto:

... class has_shape(ObjectProperty, FunctionalProperty):

... domain = [Bacterium]

... range = [Shape]

For DataProperty, the possible ranges appear in the right column of

Table 4-1.

In addition, Owlready offers a simplified notation “domain >> range”

which is used in place of the parent property (NB: the type of property,

DataProperty or ObjectProperty, is automatically deduced from the

range), for example:

>>> with onto:

... class has_grouping(Bacterium >> Grouping):

... pass

... class has_shape(Bacterium >> Shape, FunctionalProperty):

... pass

Chapter 5 Creating and modifying ontologies in Python

118

... class gram_positive(Bacterium >> bool, FunctionalProperty):

... pass

OWL also allows you to create subproperties, that is, properties that

inherit from another property, as follows:

>>> with onto:

... class has_rare_shape(has_shape): pass

5.4  �Creating individuals
Individuals are created like any other instance in Python, by calling

the class:

>>> my_bacterium = Bacterium()

The new individual is, by default, displayed in the format “ontology_

name.individual name”, where ontology_name is the ontology filename

(without the .owl extension) and individual name is the class name in

lowercase plus a number:

>>> my_bacterium

onto.bacterium1

Owlready automatically assigns a new IRI to the individual, created

by taking the IRI of the ontology (that of the block with ...: or by default

the one associated with the class) and adding the name of the class in

lowercase followed by a number starting at 1:

>>> my_bacterium.iri

'http://test.org/onto.owl#bacterium1'

Be careful not to confuse the name of the Python variable that contains

the individual locally (here, “my_bacterium”) with the name of the entity

(here, “bacterium1”). When accessing the individual from the ontology,

Chapter 5 Creating and modifying ontologies in Python

119

you must use the name of the entity and not the name of the variable,

for example, onto.bacterium1. On the other hand, when accessing the

individual directly in Python, you must use his variable name, because it is

a Python variable, for example, my_bacterium.

>>> my_bacterium is onto.bacterium1

True

It is possible to specify the name of the individual by passing it as the

first argument to the constructor of the class:

>>> my_bacterium = Bacterium("my_bacterium")

>>> my_bacterium

onto.my_bacterium

It is also possible to provide the value of one or more relations when

creating the individual, using named arguments:

>>> my_bacterium = Bacterium("my_bacterium",

... gram_positive = True,

... has_shape = Rod(),

... has_grouping = [Isolated()])

Here, we have created a new instance of the Rod class for the value of

the property has_shape and a new instance of the Isolated class for the

property has_grouping. For the latter, we have given as value a list because

the property is not functional.

Finally, Owlready also allows you to create anonymous individuals

(represented by anonymous nodes in the RDF graph). These are created by

passing 0 (zero) instead of the individual’s name (the number obtained is

arbitrary, and you may therefore have another one):

>>> anonymous_bacterium = Bacterium(0)

>>> anonymous_bacterium

_:52

Chapter 5 Creating and modifying ontologies in Python

120

5.5  Modifying entities: relations and
existential restrictions
Relationships between individuals and existential restrictions can be

modified like any other attribute in Python. For example, it is possible to

modify an individual’s relationships as follows:

>>> my_bacterium.gram_positive = True

If it is a property of type ObjectProperty, a new instance of the

expected class can be created (here, the Rod class):

>>> my_bacterium.has_shape = Rod()

>>> my_bacterium.has_shape

onto.rod1

When the property is functional, Owlready expects a single value (as

in the preceding two lines). Otherwise, Owlready expects a list of values.

However, the lists used by Owlready are not “ordinary” Python lists, as

we can see by looking at the class of these lists and comparing it to plain

Python lists:

>>> my_bacterium.has_grouping.__class__

<class 'owlready2.prop.IndividualValueList'>

>>> [].__class__

<class ’list’>

Owlready’s lists are “CallbackList” which are able to detect the addition

or deletion of elements in the list, in order to automatically update

the quadstore. It is therefore possible to directly modify these lists, for

example, with the append(), insert(), or remove() methods:

>>> my_bacterium.has_grouping = [Isolated()]

>>> my_bacterium.has_grouping.append(InPair())

Chapter 5 Creating and modifying ontologies in Python

121

Notice that Owlready automatically transforms any list assigned

to a relation into a CallbackList (such as the list “[Isolated()]” in the

preceding example).

As seen in the previous chapter (section 4.5.4), existential restrictions

and value restrictions (“some” and “value” restrictions) are accessible in

Owlready as class properties. It works in reading but also in writing.

For example, we can change the Gram status of the Pseudomonas class

as follows:

>>> onto_chap3.Pseudomonas.gram_positive = True

And restore it as follows:

>>> onto_chap3.Pseudomonas.gram_positive = False

We will also return to class properties in more detail in 6.3. Beyond

existential restrictions, Owlready allows you to create any kind of OWL

constructors, which we will see later (in 6.1).

5.6  �Creating entities within a namespace
By default, Owlready creates entities in the ontology namespace, that is,

the entity’s IRI begins with the ontology’s IRI. However, it is sometimes

necessary to create entities whose IRI does not start with that of ontology. To

do this, you need to create a namespace and then use that namespace in the

with block. Contrary to what we had done previously in 4.8, the namespace

must here be created from the ontology, so that the RDF triples are added

in the given ontology. The following example defines in the ontology onto a

class whose IRI is “http://purl.obolibrary.org/obo/OBOBacterium”:

>>> obo = onto.get_namespace("http://purl.obolibrary.org/obo/")

>>> with obo:

... class OBOBacterium(Thing): pass

>>> OBOBacterium.iri

'http://purl.obolibrary.org/obo/OBOBacterium'

Chapter 5 Creating and modifying ontologies in Python

http://purl.obolibrary.org/obo/OBOBacterium

122

The same method can be used for individuals:

>>> with obo:

... my_bacterium = OBOBacterium("my_bacterium")

>>> my_bacterium.iri

'http://purl.obolibrary.org/obo/my_bacterium'

5.7  �Renaming entities (refactoring)
The name and iri attributes of any entity can be modified to change the

entity’s IRI (an operation sometimes known as refactoring). Modifying the

name attribute allows you to change the name of the entity while keeping

it in the same namespace, while modifying the iri attribute allows you to

change both the namespace and the name.

>>> my_bacterium.iri = "http://test.org/other_onto.↲
owl#bacterium1"

Attention, renaming the entity changes its name in the ontology,

but not the name of the Python variables! After the preceding line, the

individual is still available in the Python variable my_bacterium. However,

it is no longer available as onto.my_bacterium but can be retrieved by

creating the corresponding namespace:

>>> get_namespace("http://test.org/other_onto.owl").bacterium1

Also be careful, renaming an entity does not move it to another ontology.

Chapter 5 Creating and modifying ontologies in Python

123

5.8  Multiple definitions and forward
declarations
When several entities are defined with the same IRI, Owlready does not

create a new entity but returns the already existing entity. This is updated

if necessary, for example, with the new relationships, the parent class (for

individuals) and/or inheritances (for classes). In the following example,

only one individual of the class Bacterium is created, because bacterium_a

and bacterium_b have the same IRI. However, the second creation adds

the relation “gram_positive” with the value False.

>>> with onto:

... bacterium_a = Bacterium("the_bacterium")

... bacterium_b = Bacterium("the_bacterium",

... gram_positive = False)

>>> bacterium_a is bacterium_b

True

In this way, it is possible to make forward declarations for classes or

individuals. In the following example, the Bacterium class is first created,

and then it is used in the has_shape property domain. The definition of the

class Bacterium is then continued to add the existential restriction “to have

at least one shape”.

>>> with onto:

... class Bacterium(Thing): pass

... class Shape(Thing): pass

... class has_shape(Bacterium >> Shape): pass

... class Bacterium(Thing):

... has_shape = Shape

Chapter 5 Creating and modifying ontologies in Python

124

Here, the definition of the property has_shape uses the class

Bacterium, and the (complete) definition of the class Bacterium requires

the property has_shape. It would therefore be impossible to achieve this

example without a forward declaration.

5.9  �Destroying entities
The global function destroy_entity() allows destroying an entity (class,

individual, property, etc.).

>>> temporary_bacterium = Bacterium()

>>> destroy_entity(temporary_bacterium)

5.10  �Destroying an ontology
The destroy() method allows you to permanently delete an ontology. This

method frees up the place occupied by the ontology in the quadstore.

>>> onto_temp = get_ontology("http://tmp.org/onto.owl")

>>> onto_temp.destroy()

5.11  �Saving an ontology
The save() method allows saving an ontology on disk:

onto.save(file)

where file can be a filename or a Python file object. If the file is not

specified, Owlready saves the ontology in the corresponding directory in

onto_path (see section 4.10).

Chapter 5 Creating and modifying ontologies in Python

125

The optional format attribute specifies the format of the ontology

file. Currently, Owlready supports two file formats for writing: RDF/

XML (format = rdfxml) and N-Triples (format = ntriples). By default,

the RDF/XML format is used. For example, you can save an ontology in

N-Triples as follows:

>>> onto.save("file.owl", format = "ntriples")

5.12  �Importing ontologies
To import an ontology, simply add it to the imported_ontologies list of

the destination ontology:

>>> onto.imported_ontologies.append(another_onto)

To remove the import, simply remove the ontology from the list with

remove():

>>> onto.imported_ontologies.remove(another_onto)

5.13  �Synchronization
When a multithreaded program uses Owlready to create or modify

ontologies, several threads may want to write to the quadstore at the same

time, which can cause database corruption. Note that even if each thread

writes to a different ontology, the problem remains the same, because

all the ontologies actually share the same quadstore. In the case of a

multithreaded program, it is therefore necessary to synchronize the writes

(on the contrary, the readings do not need to be synchronized).

Chapter 5 Creating and modifying ontologies in Python

126

In particular, web servers generated with Flask are generally

multithreaded (by default, Flask uses the Werkzeug server which starts the

server in multithreaded mode). In the previous chapter, we did not have a

synchronization problem because the server only read the ontology, but

did not modify it.

Owlready manages synchronization automatically, as follows.

Owlready automatically locks the write database at the entry of a with

ontology: ... block and unlocks it at the exit of the block. Similarly, the

following functions and methods are also automatically synchronized:

get_ontology(), ontology.load(), ontology.destroy(), and sync_

reasoner() (which we will see in the next chapter).

In conclusion, as long as you use the syntax “with ontology: ...”, you

(practically) don’t have to worry about synchronization! We will see an

example of synchronization in the dynamic multithreaded website of

section 7.7.

5.14  Example: populating an ontology
from a CSV file
Populating an ontology consists of creating a large number of individuals

(or possibly classes). This is often done from external resources, such as

spreadsheet files (e.g., LibreOffice Calc, Excel, etc.). These spreadsheet files

can be saved in CSV format which is easily readable in Python.

The Python csv module makes it easy to read and write CSV files in

Python. It contains two classes, csv.reader and csv.writer, for reading

and writing respectively. Each takes an open Python file object as a

parameter. The next() function allows you to get the next line from a

reader.

In the next two sections, we will see an example of populating the

ontology of bacteria with individuals, then with classes.

Chapter 5 Creating and modifying ontologies in Python

127

5.14.1  �Populating with individuals
The following figure shows a simple example of a CSV file describing

individuals of the class Bacteria. This file is named “population_

individuals.csv”; here is what it looks like:

When a bacterium has several groupings, it can be described on

several lines (e.g., the bacterium “bact3” in the previous figure).

The following program is used to populate the ontology with

individuals created from the data in the CSV file:

File population_individuals.py

from owlready2 import *

import csv

onto = get_ontology("bacteria.owl").load()

onto_individuals = get_ontology("http://lesfleursdunormal.fr/↲
static/_downloads/bacteria_individuals.owl")

onto_individuals.imported_ontologies.append(onto)

f = open("population_individuals.csv")

reader = csv.reader(f)

next(reader)

with onto_individuals:

 for row in reader:

Chapter 5 Creating and modifying ontologies in Python

128

 id, gram_positive, shape, grouping, nb_colonies = row

 individual = onto.Bacterium(id)

 if gram_positive:

 if gram_positive == "True": gram_positive = True

 else: gram_positive = False

 individual.gram_positive = gram_positive

 if nb_colonies:

 individual.nb_colonies = int(nb_colonies)

 if shape:

 shape_class = onto[shape]

 shape = shape_class()

 individual.has_shape = shape

 if grouping:

 grouping_class = onto[grouping]

 grouping = grouping_class()

 individual.has_grouping.append(grouping)

onto_individuals.save("bacteria_individuals.owl")

The program includes the following steps:

	 1.	 Import the owlready and csv Python modules.

	 2.	 Load the bacteria ontology.

	 3.	 Create a new ontology to store individuals, named

“bacteria_individuals.owl”. Indeed, when content is

generated automatically, it is preferable to store it in

a separate ontology in order to be able to distinguish

it from the content produced by hand in Protégé.

This new ontology imports the previous “bacteria.

owl” ontology.

Chapter 5 Creating and modifying ontologies in Python

129

	 4.	 Open the CSV file for reading, and skip the first

line with the next() function. Indeed, the first line

contains the column headers (“id”, “gram_positive”,

etc.) but does not describe a bacterium.

	 5.	 Start a “with: ...” block, indicating that all the RDF

triples created will be saved in the new ontology.

	 6.	 For each row remaining in the CSV file:

	 (a)	 Retrieve the identifier, the Gram status, the form,

the grouping, and the number of colonies in the

current row.

	 (b)	 Create the individual of the Bacterium class with

the desired identifier. Note that if an individual has

already been created with the same identifier, the

already existing one is returned.

	 (c)	 For the “gram_positive” and “nb_colonies”

properties:

	 i.	 Check that the value is not missing in the

CSV file.

	 ii.	 Convert the value to the desired format.

Indeed, all the values extracted from the

CSV file are character strings. Here, we

convert the values to boolean (for Gram

status) and to integer (for number of

colonies).

	 iii.	 Assign a value to the individual.

Chapter 5 Creating and modifying ontologies in Python

130

	 (d)	 For the “shape” and “grouping” properties, the

steps are similar. We retrieve the corresponding

class in the ontology of bacteria (with the syntax

“ontology[name of the entity]”), and we create

a new instance. Then we assign the value to the

individual. For the “grouping” property, the value

in Owlready is a list because the property is not

functional, so we add the new value to this list.

	 7.	 Save the new ontology.

Subsequently, if the CSV file is modified, it is easy to delete the

“bacteria_individuals.owl” ontology and recreate it by running the

program again.

5.14.2  �Populating with classes
Ontologies can also be populating from a CSV file describing classes

instead of individuals. In fact, in the biomedical field, the entities

considered can almost always be subdivided: for example, the species

of bacteria into subspecies and then in strains, drugs according to the

dosage, brand or batch number of the manufacturer, diseases according to

severity, chronicity, and so on. In this case, it is frequent to use only classes

to model a domain.

The following figure shows a simple example of a CSV file describing

subclasses of bacteria:

Chapter 5 Creating and modifying ontologies in Python

131

This file is named “population_classes.csv”. This file is similar to the

previous CSV file for individuals, but it has a new column “parent”, used

for inheritance. In addition, the column “nb_colonies” has been removed,

because the number of colonies can be counted for a given observation,

but not for a species of bacteria. When a class has several parents and/

or several groupings, it can be described on several lines (like the class

Bifidobacterium in the previous figure).

The following program populates the ontology with classes created

from the data in the CSV file:

File population_classes.py

from owlready2 import *

import csv, types

onto = get_ontology("bacteria.owl").load()

onto_classes = get_ontology("http://lesfleursdunormal.fr/↲
static/_downloads/bacteria_classes.owl")

onto_classes.imported_ontologies.append(onto)

f = open("population_classes.csv")

reader = csv.reader(f)

next(reader)

with onto_classes:

 for row in reader:

 id, parent, gram_positive, shape, grouping = row

 if parent: parent = onto[parent]

 else: parent = Thing

 Class = types.new_class(id, (parent,))

Chapter 5 Creating and modifying ontologies in Python

132

 if gram_positive:

 if gram_positive == "True": gram_positive = True

 else: gram_positive = False

 Class.gram_positive = gram_positive

 if shape:

 shape_class = onto[shape]

 Class.has_shape = shape_class

 if grouping:

 grouping_class = onto[grouping]

 Class.has_grouping.append(grouping_class)

onto_classes.save("bacteria_classes.owl")

This program follows the same structure as the previous one, with

three differences:

•	 The name of the parent class is present in the “parent”

row. The class itself is obtained from the ontology, and

it defaults to Thing.

•	 The new class is created using the types Python

module to dynamically create a class whose name is

available in a variable (see section 5.2.1). If a class with

the same name has already been created previously,

the same class is returned (after being updated if a new

parent class has been specified).

•	 For the shape and grouping properties, we use the class

directly without creating an instance. The properties

of the new class are therefore defined as existential

restrictions, which are used as class properties in

Owlready (see sections 4.5.4 and 5.5).

Chapter 5 Creating and modifying ontologies in Python

133

We made the choice not to use a formal definition in the classes (using

“equivalent_to”, as we did for the Pseudomonas class in Chapter 3).

We could have made a different choice and created definitions using

equivalence relations and constructors (we will do this in the next chapter;

see 6.6).

To check that the program is working properly, we can open the

ontology created in Python in the Protégé editor, as shown in the

following image:

5.15  �Summary
In this chapter, you have learned how to modify existing ontologies in

Python and to create new ontologies from scratch. We also discussed the

problem of synchronization in a multithreaded program. Finally, we have

seen how to populate an ontology from simple CSV files, accessible with

any spreadsheet software.

Chapter 5 Creating and modifying ontologies in Python

135© Lamy Jean-Baptiste 2021
L. Jean-Baptiste, Ontologies with Python, https://doi.org/10.1007/978-1-4842-6552-9_6

CHAPTER 6

Constructs,
restrictions, and
class properties
In this chapter, we will see how to handle all the OWL constructors in

Python with Owlready. We will also see the different “shortcuts” that

Owlready offers to facilitate the use of constructors and in particular

restrictions.

6.1  �Creating constructs
OWL constructors allow you to define logical constructions from classes,

individuals, and properties (see sections 3.4.6 and 3.4.7).

In Owlready, restrictions are created with the syntax “property.

restriction_type(value)”, using the same keywords for restriction types as in

Protected:

•	 property.some(Class) for an existential restriction

•	 property.only(Class) for a universal restriction

•	 property.value(individual or data) for a value

restriction (also called role-filler)

https://doi.org/10.1007/978-1-4842-6552-9_6#DOI

136

•	 property.exactly(cardinality, Class) for an exact

cardinality restriction

•	 property.min(cardinality, Class) and property.

max(cardinality, Class) for minimal and maximal

cardinality restrictions, respectively

The logical operators NOT (complement), AND (intersection), and OR

(union) are obtained as follows:

•	 Not(Class)

•	 And([Class1, Class2,...]) or Class1 & Class2 & ...

•	 Or([Class1, Class2,...]) or Class1 | Class2 | ...

A set of individuals is obtained as follows:

•	 OneOf([individual1, individual2,...])

The inverse of a property is obtained as follows:

•	 Inverse(Property)

A property chain (also called composition) is obtained as follows:

•	 PropertyChain([Property1, Property2,...])

In the previous definitions, the classes can be entities, but also other

constructors. Constructors can therefore be nested within each other.

Constructors can be used in the is_a and equivalent_to attributes of

classes. For example, we can create the Coccus class (which groups round

bacteria; see 3.3), entirely in Python, as follows:

>>> from owlready2 import *

>>> onto = get_ontology("bacteria.owl").load()

>>> with onto:

... class Coccus(onto.Bacterium):

... equivalent_to = [

Chapter 6 Constructs, restrictions, and class properties

137

... onto.Bacterium & onto.has_shape.some(onto.Round)

... & onto.has_shape.only(onto.Round)

...]

Similarly, we can define the Pseudomonas class with four restrictions:

>>> with onto:

... class Pseudomonas(onto.Bacterium):

... is_a = [

... onto.has_shape.some(onto.Rod),

... onto.has_shape.only(onto.Rod),

... �onto.has_grouping.some(onto.Isolated |↲
onto.InPair),

... onto.gram_positive.value(False)

...]

Owlready will automatically complete the is_a list of the class created

with the class (or classes) declared as the parent class in Python (here, the

Bacterium class). We can verify that as follows:

>>> Pseudomonas.is_a

[bacteria.Bacterium,

 bacteria.has_shape.some(bacteria.Rod),

 bacteria.has_shape.only(bacteria.Rod),

 bacteria.has_grouping.some(bacteria.Isolated | bacteria.InPair),

 bacteria.gram_positive.value(False)]

Chapter 6 Constructs, restrictions, and class properties

138

6.2  �Accessing construct parameters
The following attributes provide access to the information contained in the

main constructors (for the full list of constructors and their attributes, refer

to C.6 in the reference manual, Appendix C):

•	 Logical operators AND and OR (intersection and

union, class And and Or, respectively):

–– Attribute Classes: The list of classes to which the

intersection or union relates

•	 Restrictions (class Restriction):

–– Attribute property: The property to which the

restriction relates

–– Attribute type: The type of restriction (a value chosen

among the constants SOME, ONLY, VALUE, MAX, MIN, and

EXACTLY)

–– Attribute value: The value to which the restriction

relates (a class for types SOME, ONLY, MAX, MIN, and

EXACTLY, an individual or a value for type VALUE)

–– Attribute cardinality: The number of relationships

concerned (only available for MAX, MIN, and EXACTLY

restrictions)

For example, if we take the class Streptococcus and its equivalent

definition, we can analyze it as follows in Python:

>>> onto.Streptococcus.equivalent_to[0]

bacteria.Bacterium

& bacteria.has_shape.some(bacteria.Round)

& bacteria.has_shape.only(bacteria.Round)

& bacteria.has_grouping.some(bacteria.InSmallChain)

Chapter 6 Constructs, restrictions, and class properties

139

& bacteria.has_grouping.only(Not(bacteria.Isolated))

& bacteria.gram_positive.value(True)

>>> onto.Streptococcus.equivalent_to[0].Classes[1]

bacteria.has_shape.some(bacteria.Round)

>>> onto.Streptococcus.equivalent_to[0].Classes[1].property

bacteria.has_shape

>>> onto.Streptococcus.equivalent_to[0].Classes[1].type == SOME

True

>>> onto.Streptococcus.equivalent_to[0].Classes[1].value

bacteria.Round

If we do not know the category of constructors used, the isinstance()

Python function allows us to test it, for example:

>>> constructor = onto.Streptococcus.equivalent_to[0]

>>> if isinstance(constructor, And):

... print("And", constructor.Classes)

... elif isinstance(constructor, Or):

... print("Or", constructor.Classes)

... elif isinstance(constructor, Restriction):

... �print("Restriction", constructor.property,↲
constructor.type, constructor.value)

And [bacteria.Bacterium,

 bacteria.has_shape.some(bacteria.Round),

 bacteria.has_shape.only(bacteria.Round),

 bacteria.has_grouping.some(bacteria.InSmallChain),

 bacteria.has_grouping.only(Not(bacteria.Isolated)),

 bacteria.gram_positive.value(True)]

Chapter 6 Constructs, restrictions, and class properties

140

In addition, the attributes listed here are all modifiable: Owlready

automatically updates the quadstore when the attributes are modified.

For example, we can change the restriction on the Gram status of the

Streptococcus class as follows:

>>> onto.Streptococcus.equivalent_to[0].Classes[-1].value = False

6.3  �Restrictions as class properties
Owlready provides access to all of the OWL constructors, as we saw in

the two previous sections. However, the creation of constructors or the

access to the information contained in them is often complex and tedious.

This is why Owlready also offers several “shortcuts” to facilitate the use of

constructors. We have already seen an example of a shortcut for accessing

existential restrictions as if they were class properties in 4.5.4.

Indeed, restrictions are often used to represent relationships between

classes. The relationships between two classes are more complex than the

relationships between two individuals: between two individuals, either the

relationship exists (which corresponds to a triple in the quadstore), or it

does not exist. On the contrary, a class brings together several individuals,

which leads to several scenarios:

•	 All the individuals of the first class are in relation with

at least one individual of the second class: it is the

existential restriction (“some” in Protégé).

•	 All individuals of the first class are in relation with only

individuals of the second class: this is the universal

restriction (“only” in Protégé).

•	 Each individual of the first class is in relation to

each individual of the second class: OWL does not

directly allow this type of relationship between classes

Chapter 6 Constructs, restrictions, and class properties

141

to be created. However, it is possible to obtain an

equivalent result by reifying the property, that is to

say, by transforming it into a class associated with two

properties.

Owlready allows translating the relations between two classes into

class properties, and vice versa. This allows you to easily create or read

constructors corresponding to the following forms:

•	 (Property some Class)

•	 (Property value individual)

•	 (Property only (Class or ...))

•	 (Property only ({ individual,... }))

•	 (Property only (Class or ... or { individual,... }))

The special annotation “class_property_type” indicates which type

of restriction is used for a given property. The possible values are

•	 ["some"]: When this value is used, class properties

correspond to existential restrictions (“some”). This

is the default value for a property if the annotation

“class_property_type” is not specified.

•	 ["only"]: When this value is used, class properties

correspond to universal restrictions (“only”).

•	 ["some, only"]: When this value is used, class

properties correspond to both existential and universal

restrictions.

•	 ["relation"]: This value leads to creating direct

relationships between classes, using an RDF triple.

Please note these direct relationships are not valid in

OWL, and they will not be taken into account by the

Chapter 6 Constructs, restrictions, and class properties

142

reasoners. However, many RDF graph databases use

direct relationships between classes; this value makes it

possible to read or produce such databases. These RDF

databases are devoid of formal semantics and therefore

are not OWL ontologies.

We can use these class properties to more easily define classes

of bacteria in the ontology of bacteria from Chapter 3. We will start

by modifying three properties, gram_positive, has_shape, and has_

grouping, in order to specify the type of class property associated with

each. We have chosen to keep the same modeling choices as in Chapter 3:

we will use existential restrictions for gram_positive and has_grouping

and both existential and universal restrictions for has_shape:

>>> with onto:

... onto.gram_positive.class_property_type = ["some"]

... onto.has_shape.class_property_type = ["some, only"]

... onto.has_grouping.class_property_type = ["some"]

Then, we can create a new Pseudomonas class, called Pseudomonas2,

in a simpler way than before (see 6.1), by simply defining the values of the

class properties:

>>> with onto:

... class Pseudomonas2(onto.Bacterium): pass

... Pseudomonas2.gram_positive = False

... Pseudomonas2.has_shape = onto.Rod

... Pseudomonas2.has_grouping = [onto.Isolated | onto.InPair]

The following syntax is equivalent, but simpler. It consists in defining

the class properties in the body of the class (see 2.9 for the syntax of the

class statement in Python and the use of class properties):

>>> with onto:

... class Pseudomonas3(onto.Bacterium):

Chapter 6 Constructs, restrictions, and class properties

143

... gram_positive = False

... has_shape = onto.Rod

... has_grouping = [onto.Isolated | onto.InPair]

We can then verify that the restrictions have been created as expected:

>>> Pseudomonas3.is_a

[bacteria.Bacterium,

 bacteria.has_shape.some(bacteria.Rod),

 bacteria.has_shape.only(bacteria.Rod),

 bacteria.has_grouping.some(bacteria.Isolated | bacteria.InPair),

 bacteria.gram_positive.value(False)]

The Pseudomonas3 class obtained is identical to that defined here

using the constructor (see 6.1).

We can also create new classes of bacteria using class properties:

>>> with onto:

... class Listeria(onto.Bacterium):

... gram_positive = True

... has_shape = onto.Rod

... has_grouping = [onto.InLongChain]

>>> Listeria.is_a

[bacteria.Bacterium,

 bacteria.has_shape.some(bacteria.Rod),

 bacteria.has_shape.only(bacteria.Rod),

 bacteria.has_grouping.some(bacteria.InLongChain),

 bacteria.gram_positive.value(True)]

Classes and their class properties can be changed; Owlready will

automatically update the restrictions in the quadstore. In the following

example, we add a grouping to the Listeria class:

>>> Listeria.has_grouping.append(onto.Isolated)

>>> Listeria.is_a

Chapter 6 Constructs, restrictions, and class properties

144

[bacteria.Bacterium,

 bacteria.has_shape.some(bacteria.Rod),

 bacteria.has_shape.only(bacteria.Rod),

 bacteria.has_grouping.some(bacteria.InLongChain),

 bacteria.has_grouping.some(bacteria.Isolated),

 bacteria.gram_positive.value(True)]

Class properties also work for “reading”, that is, to analyze the

constructors of a class, even if they were not created via Owlready class

properties. For example, if we create the Listeria2 class like this, using

constructors:

>>> with onto:

... class Listeria2(onto.Bacterium):

... is_a = [onto.has_shape.some(onto.Rod),

... onto.has_shape.only(onto.Rod),

... onto.has_grouping.some(onto.InLongChain),

... onto.gram_positive.value(True)]

We can still use class properties to analyze constructors (or

modify them):

>>> Listeria2.has_grouping

[bacteria.InLongChain]

This explains why we were able to use the class properties in Chapter 4

to access an external ontology.

The following table summarizes the types of class properties supported

by Owlready and the constructors it generates. In this table, C, C1, and C2

are classes, i1 and i2 are individuals, and p is a property.

Chapter 6 Constructs, restrictions, and class properties

145

p.class_property_type Translation of <<C.p = [C1, C2,...,
i1, i2,...]>>

["some"] C subclassof: p some C1

C subclassof: p some C2

...

C subclassof: p value i1

C subclassof: p value i2

...

["only"] C subclassof: p only (C1 or C2...

or {i1, i2...})

["some, only"] C subclassof: p some C1

C subclassof: p some C2

...

C subclassof: p value i1

C subclassof: p value i2

...

C subclassof: p only (C1 or C2...

or {i1, i2...})

["relation"] Assert the following RDF triples:

(C, p, C1)

(C, p, C2)

...

(C, p, i1)

(C, p, i2)

...

Chapter 6 Constructs, restrictions, and class properties

146

6.4  �Defined classes
Owlready also allows you to use class properties to create defined classes,

with definitions of the following form:

•	 Parent_class1 and Parent_class2 ...

and (Property some Class) ...

and (Property value individual) ...

and (Property only (Class ... or { individual,... }))

To do this, Owlready uses the special boolean annotation “defined_

class” to indicate that a class is defined. If this annotation is True for a

class, Owlready will generate a definition from the class properties instead

of the restrictions seen in the previous section. The default value is False

for this annotation.

The following example creates a new defined class of Bacterium:

>>> with onto:

... class Corynebacterium(onto.Bacterium):

... defined_class = True

... gram_positive = False

... has_shape = onto.Rod

... has_grouping = [onto.InCluster]

Note the first line of the class body, “defined_class = True”, which

indicates that it is a defined class.

We can verify that the definition has been created:

>>> Corynebacterium.equivalent_to

[bacteria.Bacterium

& bacteria.gram_positive.value(False)

& bacteria.has_shape.some(bacteria.Rod)

& bacteria.has_shape.only(bacteria.Rod)

& bacteria.has_grouping.some(bacteria.InCluster)]

Chapter 6 Constructs, restrictions, and class properties

147

On the other hand, Owlready did not create a simple restriction (that is

to say, apart from those present in the definition):

>>> Corynebacterium.is_a

[bacteria.Bacterium]

As before, the class properties can be modified, and Owlready will

update the definition automatically. Similarly, the properties of the class

also allow access to the information present in the definition, even if it was

not created with Owlready.

When creating the definition, Owlready combines the different values

of the class properties into a single definition. Generally, if C, P1, P2, S1,

S2, O1, and O2 are classes, s is a property that uses existential restrictions,

o is a property that uses universal restrictions, and s1, s2, o1, and o2 are

individuals, when we define:

C.is_a = [P1, P2,...]

C.s = [S1, S2,..., s1, s2,...]

C.o = [O1, O2,..., o1, o2,...]

Owlready will generate the following definition:

C equivalent_to P1 and P2...

 and (s some S1) and (s some S2)...

 and (s value s1) and (s value s2)...

 and (o only (O1 or O2... or {o1, o2...}))

6.5  Example: creating the ontology
of bacteria in Python
The following program, given by way of illustration, makes it possible to

recreate the ontology of bacteria of Chapter 3 from scratch, entirely in

Python, using constructors. Creating an ontology in Python may seem

Chapter 6 Constructs, restrictions, and class properties

148

more laborious than with Protégé, but it also has advantages: in particular,

it is possible to copy and paste definitions, which allows you to quickly

create similar classes.

File create_onto.py

from owlready2 import *

onto = get_ontology("http://lesfleursdunormal.fr/static/↲
_downloads/bacteria.owl#")

with onto:

 class Shape(Thing): pass

 class Round(Shape): pass

 class Rod(Shape): pass

 AllDisjoint([Round, Rod])

 class Grouping(Thing): pass

 class Isolated(Grouping): pass

 class InPair(Grouping): pass

 class InCluster(Grouping): pass

 class InChain(Grouping): pass

 class InSmallChain(InChain): pass

 class InLongChain(InChain): pass

 AllDisjoint([Isolated, InPair, InCluster, InChain])

 AllDisjoint([InSmallChain, InLongChain])

 class Bacterium(Thing): pass

 AllDisjoint([Bacterium, Shape, Grouping])

 �class gram_positive(Bacterium >> bool, FunctionalProperty):

 pass

 �class nb_colonies(Bacterium >> int, FunctionalProperty):

 pass

Chapter 6 Constructs, restrictions, and class properties

149

 �class has_shape(Bacterium >> Shape, FunctionalProperty):

 pass

 class has_grouping(Bacterium >> Grouping): pass

 class is_shape_of(Shape >> Bacterium):

 inverse = has_shape

 class is_grouping_of(Grouping >> Bacterium):

 inverse = has_grouping

 class Pseudomonas(Bacterium):

 is_a = [has_shape.some(Rod),

 has_shape.only(Rod),

 has_grouping.some(Isolated | InPair),

 gram_positive.value(False)]

 class Coccus(Bacterium):

 equivalent_to = [Bacterium

 & has_shape.some(Round)

 & has_shape.only(Round)]

 class Bacillus(Bacterium):

 equivalent_to = [Bacterium

 & has_shape.some(Rod)

 & has_shape.only(Rod)]

 class Staphylococcus(Coccus):

 equivalent_to = [Bacterium

 & has_shape.some(Round)

 & has_shape.only(Round)

 & has_grouping.some(InCluster)

 & gram_positive.value(True)]

 class Streptococcus(Coccus):

 equivalent_to = [Bacterium

Chapter 6 Constructs, restrictions, and class properties

150

 & has_shape.some(Round)

 & has_shape.only(Round)

 & has_grouping.some(InSmallChain)

 & has_grouping.only(Not(Isolated))

 & gram_positive.value(True)]

 unknown_bacterium = Bacterium(

 "unknown_bacterium",

 has_shape = Round(),

 has_grouping = [InCluster("in_cluster1")],

 gram_positive = True,

 nb_colonies = 6

)

onto.save("bacteria.owl")

6.6  Example: populating an ontology
with defined classes
In this example, we will continue the population of the ontology of

bacteria. This time, we will populate the ontology with classes (as in

5.14.2), but using definitions with equivalence relations. We will reuse the

same CSV file as before (called “population_classes.csv”):

Chapter 6 Constructs, restrictions, and class properties

151

We can populate the ontology in two ways: either by using class

properties (which is the simplest option) or by using constructors (which is

more complicated, but may be necessary if you want to create definitions

more complex than those generated by Owlready).

6.6.1  �Populating using class properties
The following program uses class properties to populate the ontology of

bacteria with defined classes, from the data in the preceding CSV file:

File population_defined_classes1.py

from owlready2 import *

import csv, types

onto = get_ontology("bacteria.owl").load()

onto.gram_positive.class_property_type = ["some"]

onto.has_shape.class_property_type = ["some", "only"]

onto.has_grouping.class_property_type = ["some"]

onto_classes = get_ontology("http://lesfleursdunormal.fr/↲
static/_downloads/bacteria_defined_classes.owl")

onto_classes.imported_ontologies.append(onto)

f = open("population_classes.csv")

reader = csv.reader(f)

next(reader)

with onto_classes:

 for row in reader:

 id, parent, gram_positive, shape, grouping = row

 if parent: parent = onto[parent]

 else: parent = Thing

Chapter 6 Constructs, restrictions, and class properties

152

 Class = types.new_class(id, (parent,))

 Class.defined_class = True

 if gram_positive:

 if gram_positive == "True": gram_positive = True

 else: gram_positive = False

 Class.gram_positive = gram_positive

 if shape:

 shape_class = onto[shape]

 Class.has_shape = shape_class

 if grouping:

 grouping_class = onto[grouping]

 Class.has_grouping.append(grouping_class)

onto_classes.save("bacteria_defined_classes.owl")

This program is very similar to the one we saw in the previous chapter

to create undefined classes (see 5.14.2). It only differs in two points:

•	 At the start of the program, for each of the three

properties, we indicated the type of the associated class

properties.

•	 When we create a class, we indicate that it is a defined

class (with “Class.defined_class = True”).

To verify the proper functioning of the program after its execution, we

can open the ontology created in Python in the Protégé editor, as shown in

the following screenshot:

Chapter 6 Constructs, restrictions, and class properties

153

6.6.2  �Populating using constructs
The following program also populates the ontology of bacteria with

defined classes, from data in the CSV file. Unlike the previous one, it does

not use class properties but directly creates constructors. This second

program is more complex than the previous one, which shows the interest

of Owlready’s class properties!

File population_defined_classes2.py

from owlready2 import *

import csv, types

onto = get_ontology("bacteria.owl").load()

onto_classes = get_ontology("http://lesfleursdunormal.fr/↲
static/_downloads/bacteria_defined_classes.owl")

onto_classes.imported_ontologies.append(onto)

f = open("population_classes.csv")

reader = csv.reader(f)

next(reader)

Chapter 6 Constructs, restrictions, and class properties

154

id_2_parents = defaultdict(list)

id_2_gram_positive = {}

id_2_shape = {}

id_2_groupings = defaultdict(list)

for row in reader:

 id, parent, gram_positive, shape, grouping = row

 if parent:

 id_2_parents[id].append(onto[parent])

 if gram_positive:

 if gram_positive == "True": gram_positive = True

 else: gram_positive = False

 id_2_gram_positive[id] = gram_positive

 if shape:

 shape_class = onto[shape]

 id_2_shape[id] = shape_class

 if grouping:

 grouping_class = onto[grouping]

 id_2_groupings[id].append(grouping_class)

with onto_classes:

 for id in id_2_parents:

 if id_2_parents[id]:

 �Class = types.new_class(id,↲
tuple(id_2_parents[id]))

 else:

 Class = types.new_class(id, (Thing,))

 conditions = []

Chapter 6 Constructs, restrictions, and class properties

155

 if id in id_2_gram_positive:

 conditions.append(onto.gram_positive.value(↲
 id_2_gram_positive[id]))

 if id in id_2_shape:

 �conditions.append(onto.has_shape.some↲
(id_2_shape[id]))

 �conditions.append(onto.has_shape.only↲
(id_2_shape[id]))

 for grouping in id_2_groupings[id]:

 conditions.append(onto.has_grouping.some(grouping))

 if len(conditions) == 1:

 Class.equivalent_to.append(conditions[0])

 elif len(conditions) > 1:

 Class.equivalent_to.append(And(conditions))

onto_classes.save("bacteria_defined_classes.owl")

The program has two parts. The first part reads the entire CSV file and

stores all the data in dictionaries, and the second creates the classes and

the equivalence relationships. Indeed, the equivalence relations must be

defined “in one piece” (as we saw in 3.4.8). It is therefore necessary to have

all the information on a class to be able to create its definition. However,

in our CSV file, a class can be defined on several lines (e.g., here, the class

Bifidobacterium). In this case, we cannot create the definition after only

reading the first line.

The first part uses standard dictionaries and defaultdict, that is,

dictionaries with a default value (see 2.4.6), to simplify the program. This

dictionary automatically creates the missing entries and initializes them

with the value of an empty list.

The second part of the program goes through all the class identifiers

in the id_2_parents dictionary. For each identifier, we create a class

inheriting from the parent classes or, failing that, from Thing. Next, we

Chapter 6 Constructs, restrictions, and class properties

156

create a list of conditions called conditions, initially empty. Then we look

at the values available in the dictionaries for the properties gram_positive,

has_shape, and has_grouping, and we add in the list conditions the

corresponding restrictions:

•	 For the gram_positive property, we used a value

restriction because it is a data property.

•	 For the has_form property, we used two restrictions, an

existential restriction and a universal restriction, in the

manner of what we had done in Chapter 3.

•	 For the has_grouping property, we used a single,

existential, restriction in order to leave open the

possibility of other groupings.

Finally, we add an equivalence relation in Class.equivalent_to. If the

conditions list contains only one condition, we add this unique condition

in Class.equivalent_to. If the conditions list contains conditions, we

perform the intersection of these conditions with the operator And(), and

then we add this intersection to Class.equivalent_to. This means that

when several conditions are present, all of them must be satisfied.

The ontology created by this program is equivalent to that created by

the previous program.

6.7  �Summary
In this chapter, you have learned how to handle OWL constructs and

class restrictions, a major feature in OWL. We also presented the various

shortcuts Owlready proposes, such as class properties or defined classes.

Finally, we have seen how to create defined classes from CSV files and

how to create the ontology of bacteria of Chapter 3 entirely in Python.

You are now able to create in Python almost everything that can be

created in Protégé.

Chapter 6 Constructs, restrictions, and class properties

157© Lamy Jean-Baptiste 2021
L. Jean-Baptiste, Ontologies with Python, https://doi.org/10.1007/978-1-4842-6552-9_7

CHAPTER 7

Automatic reasoning
In this chapter, we will see how to use the HermiT and Pellet reasoners in

Python, in order to check the consistency of an ontology and to perform

automatic deductions and classification, on the basis of the logical

constructors.

7.1  �Disjoints
Owlready allows creating disjoints between classes with the class

AllDisjoint. For example, we can declare the classes Isolated, InPair,

InCluster, and InChain as pairwise disjoint, as follows:

>>> from owlready2 import *

>>> onto = get_ontology("bacteria.owl").load()

>>> AllDisjoint([onto.Isolated, onto.InPair, onto.InCluster,

... onto.InChain])

Note that Owlready, like Protégé, does not distinguish disjoints

between two entities from pairwise disjoints between several entities,

unlike OWL. Owlready will automatically choose the right OWL method

according to the number of entities involved in the disjoint. In addition,

AllDisjoint also works with a list of properties (disjoint properties) or a list

of individuals (different individuals).

https://doi.org/10.1007/978-1-4842-6552-9_7#DOI

158

It is possible to find all the disjoint to which a class belongs, with

the disjoints() method. It returns a generator to list the AllDisjoints

involving a given entity. Then, the entities attribute of an AllDisjoint

makes it possible to obtain the list of entities declared as disjoint.

7.2  �Reasoning with the Open-World
assumption

The sync_reasoner() function allows you to run the reasoner and

automatically apply the facts deduced to the quadstore. By default, the

HermiT reasoner is used. The sync_reasoner_pellet() and sync_

reasoner_hermit() functions are used to specify the reasoner; Pellet and

HermiT work the same way in Owlready.

Note: HermiT and Pellet are Java programs, so you will need to install

a Java virtual machine to use them. If you don’t have Java, you may install

it from www.java.com/ (for Windows and Mac OS) or from the packages

of your Linux distribution (the packages are often named “jre” or “jdk” for

Java Runtime Environment and Java Development Kit). On the other hand,

the reasoners themselves are supplied with Owlready. If Java has been

installed in a nonstandard directory (especially on Windows), it is possible

to enter the path to Java as follows (replace the path with yours):

import owlready2

owlready2.JAVA_EXE = "C:\\Program Files\\Java\\jre8\\bin\\↲
java.exe"

For example, let’s take the ontology of bacteria and start by checking

the class to which the individual “unknown_bacterium” belongs:

>>> onto.unknown_bacterium.__class__

bacteria.Bacterium

Chapter 7 Automatic reasoning

https://www.java.com/

159

We then run the reasoner:

>>> sync_reasoner()

* Owlready2 * Running HermiT...

 java [...]

* Owlready2 * HermiT took 0.5354642868041992 seconds

* Owlready * Reparenting bacteria.unknown_bacterium [...]

By default, Owlready displays the reasoner’s command line and the

reclassifications carried out (the debug = 0 parameter makes it possible to

avoid this display).

Here, we note that the individual “unknown_bacterium” has been

reclassified in the Staphylococcus class, as it had been in Protégé:

>>> onto.unknown_bacterium.__class__

bacteria.Staphylococcus

The facts deduced by the reasoner are by default stored in the ontology

“http://inferrences/”. It is possible to place them in another ontology by

using a “with: ...” block, as in the following example:

>>> onto_inferences = get_ontology("http://lesfleursdunormal.↲
fr/static/_downloads/bacteria_inferences.owl#")

>>> with onto_inferences:

... sync_reasoner()

This ontology contains the inferences; it can then be saved (see 5.11):

>>> onto_inferences.save("bacteria_inferences.owl")

The inferences can thus be loaded from the ontology “bacteria_

inferences.owl”. This will avoid having to call the reasoner again, which

saves time.

Chapter 7 Automatic reasoning

160

Owlready also allows you to restrict the reasoning to certain ontologies,

by passing a list of ontologies to the sync_reasoner() function:

>>> sync_reasoner([onto])

Finally, the optional parameters infer_property_values and

infer_data_property_values (supported only by the Pellet reasoner)

make it possible to infer the values of the properties of individuals (object

properties and data properties, respectively, for the two options):

>>> sync_reasoner(infer_property_values = True)

>>> sync_reasoner_pellet(infer_data_property_values = True)

These two options can also be used simultaneously:

>>> sync_reasoner_pellet(infer_property_values = True,

... infer_data_property_values = True)

7.3  �Reasoning in a closed world or
in a local closed world

OWL reasoners operate according to the Open-World hypothesis: anything

that is not prohibited is considered possible (see section 3.5). However, it

is often desirable to limit the reasoning to known facts, for the whole of the

ontology or for certain entities only. This is called reasoning “in a closed

world” or sometimes “negation as failure”: that is to say that everything

that is not explicitly known is considered false.

In Owlready, the close_world() function allows to “close the world”

and to limit the reasoning to the facts present in the ontology, for the

individual, the class, or the ontology passed in an argument. This function

automatically adds the necessary constraints, in the form of constructors.

We speak of “reasoning in a closed world” when all the ontology is closed

and “reasoning in a local closed world” when only some entities are closed.

Chapter 7 Automatic reasoning

161

We had already encountered a problem of “open or closed world”

with the Streptococcus class in Chapter 3 (see point 2 at the end

of section 3.5): a round-shaped bacterium, grouped in chain and

having a Gram positive coloring, is classified as a Coccus but not as a

Streptococcus, because the reasoner cannot prove that there is no other

grouping (unknown and therefore absent in the ontology) which would

be of Isolated type.

In the following example, we create the unknown_bacterium2 which

corresponds to the preceding criteria:

>>> with onto:

... unknown_bacterium2 = onto.Bacterium(

... gram_positive = True,

... has_shape = onto.Round(),

... has_grouping = [onto.InSmallChain()])

For the reason explained earlier, when the reasoner is executed,

the bacterium is reclassified in the Coccus class but not in the

Streptococcus class:

>>> sync_reasoner()

>>> unknown_bacterium2.__class__

bacteria.Coccus

Indeed, although only a small chain grouping is asserted for this

bacterium, the reasoner works in an open world. He hypothesizes that

another type of grouping may exist, but which is not known (the has_

grouping property is not functional; thus, it can have several values for

the same individual). However, we had defined the Streptococcus class as

having no isolated grouping. Here, no isolated grouping is known for the

unknown_bacterium2, but nothing prevents us from assuming that such a

grouping exists.

Chapter 7 Automatic reasoning

162

To prohibit this hypothesis and solve our problem, we must “close the

world”, that is to say, when we say that this bacterium has a grouping in a

small chain, it necessarily has this grouping, and it has no other grouping

than this one. The close_world() function does this, as the following

example shows:

>>> close_world(unknown_bacterium2)

>>> unknown_bacterium2.is_a

[bacteria.Coccus,

 bacteria.has_grouping.only(OneOf([bacteria.insmallchain1]))]

We note that a universal restriction (i.e., only) has been added to the

individual by close_world(): this restriction indicates that the bacterium

only has the grouping inSmallChain1. Note that close_world() has not

added any restriction for the properties “gram_positive” and “has_shape”,

because these are functional: there can be only one value for each of them,

and therefore the closing is not necessary.

Now, if we run the reasoner again, we find that the bacterium is well

classified as a Streptococcus:

>>> sync_reasoner()

>>> unknown_bacterium2.__class__

bacteria.Streptococcus

Similarly, the close_world() function can be used to close an entire

class or ontology. The complete syntax for this function is as follows:

close_world(entity, Properties = None, close_instance_list =↲
True, recursive = True)

entity is the entity to be considered in a closed world. Properties is

the list of properties to consider (if the value is None, which is the default,

all properties will be closed). If close_instance_list is True (default

value), the instances of the closed class (or classes) are restricted to the

Chapter 7 Automatic reasoning

163

instances asserted in the ontology. If recursive is True (default value) when

the entity to close is a class, close_world() is applied recursively to all

descendant classes.

7.4  �Inconsistent classes and inconsistent
ontologies

During reasoning, the reasoner may detect inconsistent classes. These

classes are illogical, and, therefore, there should be no individuals

belonging to these classes. For example, in our bacteria ontology, the

following class, inheriting from the Streptococcus class and associated

with a Rod form (via a restriction), would be inconsistent:

>>> with onto:

... class RodStreptococcus(onto.Streptococcus):

... is_a = [onto.has_shape.some(onto.Rod)]

As long as there is no individual belonging to this class, this is not

a problem. The inconsistent classes are reclassified as equivalent to

Nothing by the reasoner. It is therefore possible to test whether a class

is inconsistent in Python by testing whether Nothing is an equivalent

class, for example, to check if the RodStreptococcus class is consistent,

we can do:

>>> sync_reasoner()

>>> if Nothing in RodStreptococcus.equivalent_to:

... print("The class is inconsistent!")

... else:

... print("The class is consistent.")

The class is inconsistent!

Chapter 7 Automatic reasoning

164

In addition, the default_world.inconsistent_classes() method

provides a generator to iterate over all inconsistent classes.

On the contrary, when there exists at least one individual belonging

to an inconsistent class, the entire ontology becomes inconsistent. An

inconsistent ontology contains a logical problem that makes it absurd.

Any reasoning on the ontology then becomes impossible. Be careful not

to confuse an inconsistent class and an inconsistent ontology! In the first

case, this does not prevent the reasoner from doing his job, while in the

second, reasoning becomes impossible.

In case of an inconsistent ontology, the sync_reasoner() function

raises the exception OwlReadyInconsistentOntologyError. Let’s

continue the previous example and create an individual of the

RodStreptococcus class:

>>> rod_strepto = onto.RodStreptococcus()

>>> sync_reasoner()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "/home/jiba/src/owlready2/reasoning.py", line 120,↲
 in sync_reasoner_hermit

 raise OwlReadyInconsistentOntologyError()

owlready2.base.OwlReadyInconsistentOntologyError

This exception can be caught in Python, as follows:

>>> try:

... sync_reasoner()

... print("Ok, the ontology is consistent.")

... except OwlReadyInconsistentOntologyError:

... print("The ontology is inconsistent!")

The ontology is inconsistent!

Chapter 7 Automatic reasoning

165

The ontology of bacteria became inconsistent following the addition

of the “rod_strepto” individual. As it stands, we can no longer perform

reasoning on the quadstore until this inconsistency is resolved! This is why

we are going to delete the ontology of bacteria (modified with the addition

of “rod_strepto”), in order to be able to continue using the reasoner in the

rest of the chapter.

>>> onto.destroy()

We can then reload the bacteria ontology in the next chapters from the

OWL file (so without the “rod_strepto” individual).

7.5  �Restriction and reasoning on numbers
and strings

The ConstrainedDatatype class is used to create a constrained datatype

according to one or more facets, for example, a positive integer or a

character string of at least three characters. The syntax is as follows:

ConstrainedDatatype(base_datatype, facet1 = value1, facet2 =

value2,...)

base_datatype is the initial datatype, for example, int, float, bool,

str, norm_str, and so on (see Table 4-1).

The following facets are proposed by XMLSchema and supported by

Owlready:

•	 For numeric types:

–– max_inclusive: Maximum value, included (the value

must be inferior of equal to the given value)

–– max_exclusive: Maximum value, not included (the

value must be strictly inferior to the given value)

Chapter 7 Automatic reasoning

166

–– min_inclusive: Minimum value, included (the value

must be superior of equal to the given value)

–– min_exclusive: Minimum value, not included (the

value must be strictly superior to the given value)

–– total_digits: Number of digits present

–– fraction_digits: Number of digits present after the

decimal point

•	 For character strings:

–– length: Exact number of characters

–– min_length: Minimum number of characters

–– max_length: Maximum number of characters

–– pattern: A regular expression to constrain the possible

values for the character string

–– white_space: Indicates how white spaces are treated,

with three possible values:

* preserve: Spaces are preserved as is.

* replace: All white spaces (space, tabulation,

line feed, etc.) are replaced by spaces.

* collapse: As replace, but the spaces at the

beginning/end of the chain are removed, and the

consecutive multiple white spaces are replaced by

a single space.

Please note Owlready allows the definition of facets, but does not take

them into account: for example, spaces will not be replaced even if white_

space is used. On the other hand, other tools can take this into account

(including reasoners).

Chapter 7 Automatic reasoning

167

For example, for an integer in the range [0, 20] (inclusive), we will do:

>>> ConstrainedDatatype(int, min_inclusive = 0, max_inclusive = 20)

These constrained datatypes can be used in OWL restrictions

(some and only), in particular to indicate ranges or restrictions of the

form “property value greater than/less than X”. In this case, Owlready

also offers a shortened notation “property > value” (or >=, <, <=) which

allows to automatically create an existential restriction (“some”) with the

appropriate constrained datatype.

The following example creates an ontology with a Person class and

two age and size numeric properties. Then we create the Elderly and

TallPerson classes, which are defined using restrictions on the age and

size properties with constrained datatypes (for the second restriction, we

used a shortened notation instead of size.some (ConstrainedDatatype

(int, max_inclusive = 1.8))).

>>> onto_person = get_ontology("http://test.org/person.owl#")

>>> with onto_person:

... class Person(Thing): pass

... class age (Person >> int , FunctionalProperty): pass

... class size(Person >> float, FunctionalProperty): pass

... class Elderly(Person):

... equivalent_to = [

... Person & age.some(ConstrainedDatatype(int,

... min_inclusive = 65))

...]

... class TallPerson(Person):

... equivalent_to = [

... Person & (size >= 1.8) # Shortened notation

...]

...

Chapter 7 Automatic reasoning

168

... p1 = Person(age = 25, size = 2.0)

... p2 = Person(age = 39, size = 1.7)

... p3 = Person(age = 65, size = 1.6)

... p4 = Person(age = 71, size = 1.9)

Attention, when combining the operator “&” for an intersection with

the preceding shortened notation, it is necessary to use parentheses

because, in the Python language, the order of priority between these

operators is not the right one (in Python, & takes precedence over <, >,

<=, and >=). This is why in the previous example, we wrote “Person &

(size >= 1.8)” with the parentheses around “size >= 1.8”.

We can then run the reasoner to reclassify the four persons we have

created:

>>> sync_reasoner(onto_person)

Finally, we display their new classes (note that the individual p4 now

belongs to two classes, i.e., multiple instantiation, which is permitted in

OWL):

>>> print("p1", p1.is_a)

p1 [person.TallPerson]

>>> print("p2", p2.is_a)

p2 [person.Person]

>>> print("p3", p3.is_a)

p3 [person.Elderly]

>>> print("p4", p4.is_a)

p4 [person.Elderly, person.TallPerson]

Chapter 7 Automatic reasoning

169

Attention, in Protégé, if you want to define classes with constrained

datatypes using floating-point values, remember that Owlready associates

by default the “decimal” XML Schema datatype with floating numbers of

Python. Therefore, the TallPerson class should be defined with decimals

in Protégé:

Person and (size some decimal[>= "1.8"^^decimal])

But not with floats.

Here is the result in Protégé:

Alternatively, you can also modify the datatype used by Owlready for

floats, as follows:

>>> set_datatype_iri(float, "http://www.w3.org/2001/↲
XMLSchema#float")

7.6  �SWRL rules
SWRL (Semantic Web Rule Language) is a language that allows you to

integrate inference rules into ontologies. Rules can be written in the

Protégé editor or in Python, using Owlready, and then executed via the

integrated HermiT or Pellet reasoners.

Chapter 7 Automatic reasoning

170

In the ontology of bacteria, the following example rule makes it

possible to classify as Staphylococcus all Gram positive bacteria of round

shape and grouped in clusters:

Bacterium(?b),

gram_positive(?b, true),

has_shape(?b, ?f), Ronde(?f)

has_grouping(?b, ?r), InCluster(?r)

-> Staphylococcus(?b)

7.6.1  �SWRL syntax
A SWRL rule includes one or more conditions and one or more

consequences, separated by an arrow “->” (composed of the two

characters: minus and greater than). If the rule has several conditions or

consequences, they are separated from each other by a comma “,” which

has implicitly the meaning of a logical “and”. The elements that make up

conditions and consequences are called atoms, and the same atoms can

be used in conditions and in consequences.

In addition, SWRL rules use variables, whose names start with “?”, for

example, “?b” in the preceding example. These variables can represent

individuals or values (whole numbers, real numbers, character strings,

booleans, etc.), but never classes or properties.

The atoms available are:

•	 Membership of a class: “Class (?x)”, which means:

–– “if the individual ?x belongs to the class Class” (when

the atom is used as a condition)

–– “the individual ?x now belongs to the class Class, in

addition to his/her current class(es)” (when used as a

consequence)

Chapter 7 Automatic reasoning

171

•	 Object property value: “object_property(?x, ?y)”,

which means:

–– “if the individual ?x has property_object ?y” (condition)

–– “add relation ?x object_property ?y” (consequence)

Variables can also be replaced by specific

individual names, for example, “object_property(?x,

individual1)” or “object_property (individual2, ?y)”.

•	 Data property value: “data_property(?x, ?y)”, which

means:

–– “if individual ?x has data_property ?y” (condition)

–– “add relation ?x data_property ?y” (consequence)

Variables can also be replaced by a specific

individual name (for ?x) or by a specific value (for

?y), for example, “data_property(?x, 9.2)” or “data_

property(?x, charactersstring)”.

•	 Identical individuals: “SameAs(?x, ?y)”, which means:

–– “if individual ?x is the same as individual ?y” (condition)

–– “individual ?x is now the same as individual ?y”

(consequence)

•	 Distinct individuals: “DifferentFrom(?x, ?y)”, which

means:

–– “if individual ?x is distinct from individual ?y” (condition)

–– “individual ?x is now distinct from individual ?y”

(consequence)

•	 Membership in a datatype: “datatype(?x)”, which means:

–– “if value ?x is of the given datatype” (condition)

Chapter 7 Automatic reasoning

172

The most common datatypes are “int”, “decimal”

(for floating-point numbers), “bool”, “string”, and

“normalizedString”.

•	 Predefined functions (built-ins): “function(?x, ?y,...)”.

A large number of predefined functions exist; here are

the most frequently used:

–– add(?result, ?x, ?y): Computes ?result = ?x + ?y.

–– subtract(?result, ?x, ?y): Computes ?result = ?x - ?y.

–– multiply(?result, ?x, ?y): Computes ?result = ?x × ?y.

–– divide(?result, ?x, ?y): Computes ?result = ?x / ?y.

–– equal(?x, ?y): Tests whether ?x = ?y.

–– notEqual(?x, ?y): Tests whether ?x ≠ ?y.

–– lessThan(?x, ?y): Tests whether ?x < ?y.

–– greaterThan(?x, ?y): Tests whether ?x > ?y.

–– lessThanOrEqual(?x, ?y): Tests whether ?x ≤ ?y.

–– greaterThanOrEqual(?x, ?y): Tests whether ?x ≥ ?y.

–– stringConcat(?result, ?x, ?y): Concatenates ?x and ?y

and puts the result in ?result.

–– substring(?result, ?str, ?start, ?length): Tests if the part of

the character string ?str starting at ?start and with

length ?length is equal to ?result. ?length is optional.

–– stringLength(?length, ?str): Computes the length of the

character string ?str and puts the result in ?length.

–– contains(?str, ?part): Tests if the character string ?part is

included in ?str.

Chapter 7 Automatic reasoning

173

–– containsIgnoreCase(?string, ?part): Same as contains(), but

ignoring case.

–– startsWith(?str, ?start): Tests if the character string ?str starts

with the character string ?start.

–– endsWith(?str, ?end): Tests if the character string ?str ends

with the character string ?end.

7.6.2  �SWRL rules with Protégé
SWRL rules can be entered in Protégé, in the “Active ontology” tab and the

“Rules” subtab, as in the following image. Please note that Protégé does

not always preserve the order of elements in the rules; however, this does

not change their meaning. Attention, Owlready can only read SWRL rules
in ontologies saved in the RDF/XML or N-Triples file formats. The OWL/

XML format is not supported for SWRL rules!

The rules defined in Protégé can then be executed with reasoners

(e.g., using the sync_reasoner() function with Owlready). When the

consequences of rules create new relationships for object properties, it

is necessary to run the reasoner with the option infer_property_value

= True. When they create new relationships for data properties, it is

necessary to run the reasoner with the infer_data_property_value =

True option and to use the Pellet reasoner. HermiT does not allow inferring

the values of data properties (see 7.2).

Chapter 7 Automatic reasoning

174

When the rules are defined in Protégé and they use real numbers,

Protégé defaults to floats where Owlready expects decimals (see 7.5). It

is then necessary to force the decimal type, as in the following example:

2.2^^decimal.

7.6.3  �SWRL rules with Owlready
In Owlready, the Imp class allows you to create SWRL rules, “Imp” being

the abbreviation of “implies”. Owlready allows you to create SWRL rules

either from a written rule with a syntax equivalent to that of Protégé or by

manually creating each of the atoms (which is more complex).

In the following example, we are going to create an ontology of people

with a rule to calculate the Body Mass Index (BMI) from the size and

weight of the person. The formula for calculating BMI is as follows:

	
BMI weight

size
weight

size size
= =

´2 	

BMI is important because it determines obesity: a person is considered

obese if his BMI is greater than or equal to 30.

We first create the ontology, with a Person class and three data

properties: weight, size, and bmi.

>>> onto_person = get_ontology("http://test.org/person2.owl#")

>>> with onto_person:

... class Person(Thing): pass

... class weight(Person >> float, FunctionalProperty): pass

... class size (Person >> float, FunctionalProperty): pass

... class bmi (Person >> float, FunctionalProperty): pass

Chapter 7 Automatic reasoning

175

Then, we create a defined class for obese people: anyone with a BMI

greater than or equal to 30 will be reclassified in the Obese class.

>>> with onto_person:

... class Obese(Person):

... equivalent_to = [Person & (bmi >= 30.0)]

Finally, we create a SWRL rule. This rule will use the following

variables:

•	 ?x: An individual of the class Person

•	 ?w: His weight

•	 ?s: His size

•	 ?s2: His size squared

•	 ?b: His BMI

The Imp class allows you to create a new rule in the ontology. Then,

the method set_as_rule() makes it possible to define the rule using a

Protégé-like syntax:

>>> with onto_person:

... imp = Imp()

... �imp.set_as_rule("�Person(?x), weight(?x, ?w),↲
size(?x, ?s),↲

 �multiply(?s2, ?s, ?s),↲
divide(?b, ?w, ?s2)↲

 -> bmi(?x, ?b)")

We can then create two individuals of the Person class:

>>> p1 = Person(size = 1.7, weight = 65.0)

>>> p2 = Person(size = 1.7, weight = 90.0)

Chapter 7 Automatic reasoning

176

And run the Pellet reasoner:

>>> sync_reasoner_pellet(infer_property_values = True,

... infer_data_property_values = True)

And finally, question the BMIs and the classes to which the two

persons were reclassified:

>>> p1.bmi

22.491348

>>> p1.is_a

[person2.Person]

>>> p2.bmi

31.141868

>>> p2.is_a

[person2.Obese]

The str() Python function displays the rule in the Protégé-like syntax:

>>> str(imp)

'Person(?x), weight(?x, ?w), size(?x, ?s),↲
multiply(?s2, ?s, ?s), divide(?b, ?w, ?s2) -> bmi(?x, ?b)'

Owlready also provides access to the conditions and consequences

of the rule via the body (for conditions) and head (for consequences)

attributes:

>>> imp.body

[Person(?x), weight(?x, ?w), size(?x, ?s),↲
multiply(?s2, ?s, ?s), divide(?b, ?w, ?s2)]

>>> imp.head

[bmi(?x, ?b)]

Chapter 7 Automatic reasoning

177

It is then possible to access each of the atoms. For example, we can

retrieve the first atom from the condition part and request its class and

attributes:

>>> atom = imp.body[0]

>>> atom

Person(?x)

>>> atom.is_a

[swrl.ClassAtom]

>>> atom.class_predicate

person2.Person

>>> atom.arguments

[?x]

The reference manual (see C.7) gives the list of classes of atoms and

the attributes of each. Attention, Owlready systematically uses the attribute

“arguments” to access the arguments of the atom (i.e., the elements placed

in parentheses), where SWRL sometimes uses “arguments” and sometimes

“argument1” and “argument2”. As usual with Owlready, these attributes

can be changed directly.

Finally, the rules() and variables() methods make it possible

to obtain a generator to iterate over all the SWRL rules and the SWRL

variables in an ontology.

>>> list(onto_person.variables())

[?x, ?w, ?s, ?s2, ?b]

>>> list(onto_person.rules())

[Person(?x), weight(?x, ?w), size(?x, ?s),↲
multiply(?s2, ?s, ?s), divide(?b, ?w, ?s2) -> bmi(?x, ?b)]

Chapter 7 Automatic reasoning

178

7.6.4  �Advantages and limits of SWRL rules
SWRL rules allow reasoning involving several variables (called “free

variable”). On the contrary, the class definitions (via equivalence

relations, see 3.4.8) have no variables and in fact correspond to “pseudo-

rules” with a single free variable. Therefore, some complex reasoning

cannot be achieved by class definitions. For example, if we consider

people with friendship and enmity relationships, we can create the

“AmbiguousPerson” class corresponding to any person with a friend who

is also his enemy. This class cannot be defined by an equivalence relation:

indeed, we can define a class of People having a friend and having an

enemy, but OWL does not allow indicating that this friend and this enemy

are the same person. For this, we would need two free variables: one for

the AmbiguousPerson and another for his friend/enemy.

On the other hand, this type of reasoning can be easily carried out with

a SWRL rule, as follows:

Person(?a),

Person(?b),

friend(?a, ?b),

enemy(?a, ?b),

-> AmbiguousPerson(?a)

However, the SWRL rules have a major drawback: they are dependent

on a given application, which is contrary to the objective of independence

of the ontologies (see 3.3). For example, imagine that we use the SWRL

rule earlier to recognize Staphylococcus instead of the formal definition

(created in 3.4.8). In this case, we cannot deduce the properties of a

Staphylococcus: the rule states that all Gram positive bacteria, round and

in clusters, are Staphylococcus, but it does not affirm that all Staphylococci

are Gram positive, round, and in clusters. Therefore, the SWRL rule allows

recognizing Staphylococci, but it does not allow other applications for

which we could reuse our bacteria ontology.

Chapter 7 Automatic reasoning

179

It is therefore preferable to use formal definitions when both options

are possible and SWRL rules when the reasoning is too complex for the

definitions.

7.7  �Example: an ontology-based decision
support system

A decision support system helps an expert to make a decision, for example,

by making proposals. Here, we are interested in the identification of

bacteria: from the characteristics observed on the bacteria (Gram status,

shape, grouping, etc.) and the knowledge expressed in the ontology of

bacteria, the system tries to determine the type of bacteria. The system can

also abstain: when the data are insufficient, no determination is made.

This decision support system is implemented in the form of a dynamic

website with Flask (which we have already used in section 4.12). It includes

two pages: a “data entry” page which contains a form to describe the

bacteria observed and a “result” page which performs the reasoning and

displays the result.

The following program creates the decision support website:

File decision_support.py

from owlready2 import *

onto = get_ontology("bacteria.owl").load()

from flask import Flask, request

app = Flask(__name__)

@app.route('/')

def entry_page():

 html = """<html><body>

<h3>Enter the bacteria characteristics:</h3>

<form action="/result">

Chapter 7 Automatic reasoning

180

 Gram:

 <input type="radio" name="gram" value="True"/> Positive

 <input type="radio" name="gram" value="False"/> Negative

 Shape:

 <input type="radio" name="shape" value="Round"/> Round

 <input type="radio" name="shape" value="Rod"/> Rod

 Groupings:

 <select name="groupings" multiple="multiple">

 <option value="Isolated">Isolated</option>

 <option value="InPair">InPair</option>

 <option value="InCluster">InCluster</option>

 <option value="InSmallChain">InSmallChain</option>

 <option value="InLongChain">InLongChain</option>

 </select>

 <input type="submit"/>

</form>

</body></html>"""

 return html

ONTO_ID = 0

@app.route('/result')

def page_result():

 global ONTO_ID

 ONTO_ID = ONTO_ID + 1

 �onto_tmp = get_ontology("http://tmp.org/onto_%s.owl#" %↲
ONTO_ID)

Chapter 7 Automatic reasoning

181

 gram = request.args.get("gram", "")

 shape = request.args.get("shape", "")

 groupings = request.args.getlist("groupings")

 with onto_tmp:

 bacterium = onto.Bacterium()

 if gram == "True": bacterium.gram_positive = True

 elif gram == "False": bacterium.gram_positive = False

 if shape:

 shape_class = onto[shape]

 bacterium.has_shape = shape_class()

 for grouping in groupings:

 grouping_class = onto[grouping]

 bacterium.has_grouping.append(grouping_class())

 close_world(bacterium)

 sync_reasoner([onto, onto_tmp])

 class_names = []

 for bacterium_class in bacterium.is_a:

 if isinstance(bacterium_class, ThingClass):

 class_names.append(bacterium_class.name)

 class_names = "," .join(class_names)

 html = """<html><body>

<h3>Result: %s</h3>

</body></html>""" % class_names

 onto_tmp.destroy()

 return html

import werkzeug.serving

werkzeug.serving.run_simple("localhost", 5000, app)

Chapter 7 Automatic reasoning

182

The first page of the site, for data entry, is a simple HTML page with a

form of three fields (we could have used a static HTML page). For Gram

status and for shape, “radio button” fields are used. For grouping, it is a

“select” field, in order to allow the selection of several values.

The second page, for displaying the results, performs the

following steps:

	 1.	 Create a new temporary ontology (in order not to

“pollute” the ontology of bacteria), with an IRI of the

form “http://tmp.org/onto_XXX.owl#” where XXX

is a number.

	 2.	 Retrieve the values of the form parameters. This

is done with the functions request.args.get()

(when the parameter can only take one value) and

request.args.getlist() (when the parameter

can have several values; here, this is the case for

groupings).

	 3.	 Create an individual bacterium corresponding to

the values entered.

	 4.	 Close the world for this new bacterium. This will

prevent the reasoner from making assumptions

about values other than those entered (see

section 7.3).

	 5.	 Execute the reasoner on two ontologies: the bacteria

ontology and the temporary ontology (on the other

hand, the other temporary ontologies, created by

other threads or processes, will not be taken into

account). Inferences are placed in the temporary

ontology (for the same reason as before: in order to

avoid polluting the main ontology of bacteria).

Chapter 7 Automatic reasoning

http://tmp.org/onto_XXX.owl#”

183

	 6.	 Retrieve the names of the classes to which the

bacteria belong after reasoning. The condition

“isinstance(bacterium_class, ThingClass)”

allows you to limit yourself to “true” classes,

excluding constructors (and in particular

restrictions created by close_world()).

	 7.	 Destroy the temporary ontology (this destroys the

bacterium that we created but also its possible

shape and groupings, as well as inferences).

During the execution of the program, the website can be consulted

at the address “http://127.0.0.1:5000”. The following screenshots

show the site obtained, with the “entry” page and the “result” page. We

entered a Gram positive bacterium, round, grouped in a small chain. After

validation, the system tells us that it is a Streptococcus.

Chapter 7 Automatic reasoning

184

Only the defined classes (by equivalence relations: “equivalent_to”)

allow reclassifying individuals. As the only classes defined in the ontology

of bacteria in Chapter 3 are Staphylococcus, Streptococcus, Coccus,

and Bacillus, our system can currently identify only Staphylococci,

Streptococci, Cocci, and Bacilli. However, if the ontology were enriched

with other classes and other definitions, it would be possible to identify

a greater number of bacteria. This would possibly require taking into

account more parameters (anaerobic, other colors, etc.) to describe the

bacteria in a more detailed way.

Note that the web server is multithreaded and that we write in

the quadstore. In this case, we saw in section 5.13 that it is necessary

to take synchronization into account. Owlready automatically

synchronizes the get_ontology() and ontology.destroy()

instructions, as well as the “with ontology: ...” blocks. So we don’t have

much left to do to synchronize!

The only point where we have to take synchronization into account is

the following: each temporary ontology must necessarily have a different

name. We named them with numbers (onto_1.owl, onto_2.owl, etc.).

This is necessary because the page_result() function can be called

simultaneously by several threads. Everyone must therefore have their own

ontology: indeed, if they shared the same, when the first thread destroys

the ontology (onto_tmp.destroy()), the second could no longer continue

to work on it.

Chapter 7 Automatic reasoning

185

7.8  �Summary
In this chapter, you have learned how to perform automatic reasoning

with the Pellet and HermiT OWL reasoners. You have also learned how to

perform reasoning in a closed world, or a local closed world, and to use

SWRL rules in complement to class definitions.

Chapter 7 Automatic reasoning

187© Lamy Jean-Baptiste 2021
L. Jean-Baptiste, Ontologies with Python, https://doi.org/10.1007/978-1-4842-6552-9_8

CHAPTER 8

Annotations,
multilingual texts,
and full-text search
In this chapter, we will see how to handle annotations in Python with

Owlready. We will also see how to handle multilingual texts, often used in

annotations, and how to optimize full-text searches.

8.1  �Annotating entities
Annotations allow you to add metadata about the entities and the

relationships of an ontology. They can describe the authors, the

modification dates, as well as the description of the entities, with the

possibility of having texts in different languages. Annotations differ from

properties in that they do not interfere with the reasoning. In particular,

when defined on classes, annotations are not inherited by subclasses.

The following annotation properties are defined by default in OWL:

•	 label (the entity label)

•	 comment (any comment you may add about an entity

or relation)

•	 seeAlso

https://doi.org/10.1007/978-1-4842-6552-9_8#DOI

188

•	 versionInfo (versioning information)

•	 priorVersion

•	 deprecated (used to indicate an entity which should

no longer exist and which is kept only for compatibility

purposes)

•	 incompatibleWith

•	 backwardCompatibleWith (compatible with an entity

of an earlier version)

•	 isDefinedBy

Annotations can be accessed with the dotted notation, like any

relationship. Note that annotations are never functional, so their value is

always a list. It is possible to add to the list with the append() method or to

redefine the entire list:

>>> from owlready2 import *

>>> onto = get_ontology("bacteria.owl").load()

>>> onto.unknown_bacterium.label.append("An unknown bacterium")

>>> onto.unknown_bacterium.comment = [

... "Found in the lab at the bottom of a drawer.",

... "Remember to analyze it soon."]

In this example, we reused the unknown_bacterium individual that we

created previously in Protégé, in Chapter 3.

Any type of entity can be annotated: individuals but also classes and

properties.

Annotations can be obtained with dotted notation, like any

relationship. To remove an annotation, just remove it from the list (with

the Python del statement or the remove() method; see 2.4.4).

Chapter 8 Annotations, multilingual texts, and full-text search

189

8.2  �Multilingual texts
The character strings in the annotations can be associated with a language

(e.g., English, French, etc.). The locstr object (localized string) makes it

possible to associate a character string with its language (identified by its

two-letter code: “en” for English, “fr” for French, etc.):

>>> s = locstr("An unknown bacterium", "en")

>>> s.lang

'en'

locstr objects can be used as Python strings. They are often used in

annotations:

>>> onto.unknown_bacterium.label = [

... locstr("An unknown bacterium", "en"),

... locstr("Une bactérie inconnue", "fr")]

In addition, it is possible to filter an annotation list by language,

as follows:

>>> onto.unknown_bacterium.label

['An unknown bacterium', 'Une bactérie inconnue']

>>> onto.unknown_bacterium.label.en

['An unknown bacterium']

>>> onto.unknown_bacterium.label.fr

['Une bactérie inconnue']

As with other Owlready lists, the first() method returns the first

element (or None if the list is empty):

>>> onto.unknown_bacterium.label.en.first()

'An unknown bacterium'

Chapter 8 Annotations, multilingual texts, and full-text search

190

Lists filtered by language allow you to add new annotations, without

the need to create a locstr object. In the following example, the comment

string will be automatically associated with the English language (as if a

locstr object was used):

>>> onto.unknown_bacterium.comment.en.append("Comment in↲
English.")

8.3  �Annotating constructs
Constructors can also be annotated, using the alternative syntax

“annotation[constructor]”. The following example creates a new subclass of

Bacterium with a restriction and annotates this restriction:

>>> with onto:

... class GramPositiveBacterium(onto.Bacterium):

... is_a = [onto.gram_positive.value(True)]

>>> comment[GramPositiveBacterium.is_a[-1]].append(

... �"comment on the value restriction on gram_↲
positive.")

8.4  �Annotating properties and relations
Properties and relationships can also be annotated. Properties can be

annotated like any other entity:

>>> onto.has_shape.comment = ["A comment on the has_shape↲
property."]

OWL also makes it possible to annotate relations, that is, you may

annotate an RDF triple linking a subject to an object via a property (or

predicate). This is useful if you want to provide additional details on a

Chapter 8 Annotations, multilingual texts, and full-text search

191

relationship, in the form of metadata, for example, to indicate the author

or the date of the relation. We can do this with Owlready using the special

syntax “annotation[subject, property, object]”, for example:

>>> shape = onto.unknown_bacterium.has_shape

>>> comment[onto.unknown_bacterium, onto.has_shape, shape] =↲
 ["A comment on the fact that the bacterium has this shape."]

For relationships involving OWL built-in properties, the special values

rdf_type, rdfs_subclassof, owl_equivalentclass, and so on can be used:

>>> comment[onto.unknown_bacterium, rdf_type, onto.Bacterium] =↲
 ["a comment on belonging to the Bacterium class."]

8.5  �Creating new annotation classes
New annotation properties can be created in the same way as other

properties, inheriting from the AnnotationProperty class, for example:

>>> with onto:

... class observer(AnnotationProperty): pass

>>> onto.unknown_bacterium.observer = ["Observed by JB Lamy."]

>>> observer[onto.unknown_bacterium, rdf_type,↲
onto.Bacterium] = [

... "Also observed by JB Lamy."

...]

8.6  �Ontology metadata
The metadata of the ontology consists of annotations placed directly on

the ontology (which can be added in Protégé in the “Annotations” list of

the “Active ontology” tab). They may describe the version number, the

history of the ontology, the names of the authors, and so on. In Owlready,

Chapter 8 Annotations, multilingual texts, and full-text search

192

these annotations are available via the metadata attribute of the ontology.

For example, the annotation “comment” of Gene Ontology (GO) is

obtained as follows:

>>> go = get_ontology("http://purl.obolibrary.org/obo/go.owl").↲
load()

>>> go.metadata.comment

['cvs version: $Revision: 38972 $',

'Includes Ontology(OntologyID(OntologyIRI(<http://purl.↲
obolibrary.org/obo/go/never_in_taxon.owl>))) [Axioms: 18↲
Logical Axioms: 0]']

Metadata can also be modified with Owlready:

>>> go.metadata.comment.append("Here is a new comment!")

>>> go.metadata.comment

['cvs version: $Revision: 38972 $',

'Includes Ontology(OntologyID(OntologyIRI(<http://purl.↲
obolibrary.org/obo/go/never_in_taxon.owl>))) [Axioms: 18↲
Logical Axioms: 0]',

'Here is a new comment!']

8.7  �Full-text search
Full-text search allows you to optimize text searches in an ontology. The

speed gain can reach a factor of 1000 on large ontologies.

By default, full-text search is not activated because it increases the size of

the quadstore. It is necessary to activate it for each property on which it will

be used. The default_world.full_text_search_properties list contains

the list of properties for which full-text search is enabled. It is empty by

default. To activate full-text search on a property, simply add it to the list.

For example, to activate the full-text search on the OWL comment property:

>>> default_world.full_text_search_properties.append(comment)

Chapter 8 Annotations, multilingual texts, and full-text search

193

We can now perform full-text searches with the search() method,

using FTS objects (abbreviation for “full-text search”) containing the texts

to be searched. Unlike the normal search, the full-text search is done from

a list of keywords (and not the exact value sought) and ignores the case

(that is to say, it does not distinguish between upper- and lowercase). For

example, to search for all entities with a comment including the word

“English”, we will do:

>>> default_world.search(comment = FTS("English"))

[bacteria.unknown_bacterium]

It is possible to give several keywords (the order of the keywords does

not matter) and to use the character “*” as a wildcard, but only at the end

of a keyword. For example, to search for all entities with a comment with

the word “English” and a word starting with “comm”, we will do:

>>> default_world.search(comment = FTS("English comm*"))

[bacteria.unknown_bacterium]

The FTS objects also allow you to specify the language of the search (by

default, the search is performed in all languages). The following example

searches only in English comments:

>>> default_world.search(comment = FTS("English comm*", "en"))

Please note if you are not using FTS objects, Owlready performs a

normal, nonoptimized, search, as in the following example:

>>> default_world.search(comment = "English comm*") # Without

FTS !

[]

To deactivate full-text search, simply remove the property from the

default_world.full_text_search_properties list using remove().

Chapter 8 Annotations, multilingual texts, and full-text search

194

8.8  �Example: Using DBpedia in Python
DBpedia is an automatic extraction of structured data, derived from the

free and open Wikipedia encyclopedia. DBpedia notably contains the

relationships between Wikipedia pages but also more specific data, such

as the date of birth of people appearing on Wikipedia. An OWL ontology

structures all of the data. It is therefore a general dataset-oriented “general

culture”. The most recent version dates from 2016 and can be downloaded

at the following address: https://wiki.dbpedia.org/downloads-2016-10.

The 2020 version of DBpedia is still under development, and some

important features are still missing.

DBpedia is in the form of several files (see the following screenshot

of the website): the ontology part proper to download in OWL format

(file “dbpedia_2016-10.owl”) and the data to download in TTL format

(equivalent to N-Triples) in their canonized version (noted “ttl *” on the

DBpedia site). Several languages are available; we will work with the

English version.

 [...]

Chapter 8 Annotations, multilingual texts, and full-text search

https://wiki.dbpedia.org/downloads-2016-10

195

8.8.1  �Loading DBpedia
Because DBpedia is very large, not all files are commonly used. The

following table lists the main ones, which you can download (please note

the data is large: about 20 GB will be required).

Name in DBpedia Filename and description

Ontology OWL dbpedia_2016-10.owl

The ontology (containing classes, but no individuals)

Instance Types instance_types_wkd_uris_en.ttl.bz2

The “is_instance_of” relations between individuals

and classes (corresponding to the RDF “type” relation)

Article Categories article_categories_wkd_uris_en.ttl.bz2

The relation between Wikipedia articles and

categories (“subject” property)

Mappingbased Literals mappingbased_literals_wkd_uris_en.ttl.bz2

DataProperty present in the Wikipedia information box

Mappingbased Objects mappingbased_objects_wkd_uris_en.ttl.bz2

ObjectProperty present in the Wikipedia information

box

Category Labels category_labels_wkd_uris_en.ttl.bz2

The labels for categories

Labels labels_wkd_uris_en.ttl.bz2

Entity labels (needed for full-text search)

Person data persondata_wkd_uris_en.ttl.bz2

Data relative to persons (date of birth, etc.)

Page Links page_links_wkd_uris_en.ttl.bz2

Relations corresponding to the link between Wikipedia

pages (“wikiPageWikiLink” property)

Chapter 8 Annotations, multilingual texts, and full-text search

196

DBpedia is an OWL ontology and can therefore be loaded with

Owlready. However, DBpedia is much less “clean” than the usual

ontologies. In particular, the IRIs of the entities are not constant from one

file to another, the following prefixes being used interchangeably:

•	 http://dbpedia.org/ontology

•	 http://wikidata.dbpedia.org/ontology

•	 http://www.wikidata.org/entity

A pretreatment step will therefore be necessary in order to clean up

these inconsistencies, before loading the ontology.

In addition, DBpedia is a very voluminous ontology. This requires

taking several precautions:

	 1.	 Save the quadstore on the disk (see 4.7) to avoid

having to reload the ontology each time you use it.

	 2.	 Place temporary files on disk in a directory that

can accommodate several gigabytes of data. In

particular, under Linux, temporary files are by

default placed in /tmp, but /tmp is often stored in

RAM, which limits the available space. This can lead

to an error of type “database or disk is full”.

For very large ontologies, it is therefore preferable to place temporary

files elsewhere than in /tmp. This can be done with the sqlite_tmp_dir

when defining the quadstore:

default_world.set_backend(

 filename = "/path/to/quadstore.sqlite3",

 sqlite_tmp_dir = "/path/to/temporary/files",

)

Chapter 8 Annotations, multilingual texts, and full-text search

http://dbpedia.org/ontology
http://wikidata.dbpedia.org/ontology
http://www.wikidata.org/entity

197

The following program is used to load DBpedia into an Owlready

quadstore:

File import_dbpedia.py

from owlready2 import *

import io, bz2

DBPEDIA_DIR is the directory where you downloaded DBpedia

DBPEDIA_DIR = "/home/jiba/telechargements/dbpedia/"

TMP_DIR = "/home/jiba/tmp"

QUADSTORE = "dbpedia.sqlite3"

default_world.set_backend(filename = QUADSTORE,↲
sqlite_tmp_dir = TMP_DIR)

dbpedia = get_ontology("http://wikidata.dbpedia.org/ontology/")

contenu = open(os.path.join(DBPEDIA_DIR, "dbpedia_2016-10.↲
owl")).read()

contenu = contenu.replace("http://dbpedia.org/ontology,↲
 "http://wikidata.dbpedia.org/ontology")

contenu = contenu.replace("http://www.wikidata.org/entity,↲
 "http://wikidata.dbpedia.org/resource")

dbpedia.load(fileobj = io.BytesIO(contenu.encode("utf8")))

for fichier in os.listdir(DBPEDIA_DIR):

 if fichier.endswith(".ttl.bz2"):

 print("Import de %s..." % fichier)

 onto = get_ontology("http://dbpedia.org/ontology/%s/" %↲
 fichier.replace(".ttl.bz2", ""))

 f = bz2.open(os.path.join(DBPEDIA_DIR, fichier))

 onto.load(fileobj = f)

Chapter 8 Annotations, multilingual texts, and full-text search

198

print("Indexing...")

default_world.full_text_search_properties.append(label)

default_world.save()

In this program, three global variables must be modified according

to your configuration: DBPEDIA_DIR indicates the directory where you

downloaded the files from DBpedia (OWL and TTL.BZ2 files), TMP_DIR

indicates a temporary directory which can accommodate several GB

of data (see earlier), and QUADSTORE is the name of the file where the

Owlready quadstore will be stored (be careful, allow 13 GB for the

quadstore with the preceding files and an hour or more for the loading

time).

The DBpedia ontology (OWL file) is read as a text file and corrected

using the replace() method, then loaded with Owlready. In order to

avoid having to save the corrected version of the file, we load the ontology

directly from the RAM: the corrected version of the ontology is in the

variable contained as a character string. We transform this string into

a file object in two stages: first, we encode the string in UTF8, and then

we transform it into a file object with io.BytesIO(). Finally, we load the

ontology from this file object, with load(filobj = ...) (see 4.2).

Then, a loop traverses all the files in the DBPEDIA_DIR directory and

processes the TTL.BZ2 files. These are decompressed with the Python

module bz2, then loaded from compressed file objects. We have chosen

here to create a separate ontology for each file (which will allow you to

reload each file separately or delete the ontologies if we no longer need

them).

Note the penultimate line, which activates the full-text search on the

label property.

Then we can load the resulting quadstore in the following way, for

example, in Python console mode. (Be careful not to reuse a Python

console where you have already loaded Owlready2 and created entities

Chapter 8 Annotations, multilingual texts, and full-text search

199

in the quadstore; otherwise, you will get an error. This is because it is

not possible to load the quadstore from a file if the one in memory is not

empty.)

>>> from owlready2 import *

>>> QUADSTORE = "dbpedia.sqlite3"

>>> default_world.set_backend(filename = QUADSTORE)

* Owlready2 * WARNING: http://wikidata.dbpedia.org/ontology/

senator

belongs to more than one entity types (e.g. Class, Property,

Individual):

[owl.ObjectProperty, ontology.MemberOfParliament, DUL.

sameSettingAs];

I'm trying to fix it...

[...]

Note that loading is much faster than when importing from OWL and

TTL.BZ2 files. The “Warning” indicates that certain properties are not

properly declared in DBpedia; we can safely ignore them.

Also note that the initial loading of DBpedia and the first commands

handling this ontology can take a long time to execute, because the

underlying database is very large (around 12 GB). However, once the first

orders are placed, the indexes and caches will be in RAM, and access to

DBpedia will be much faster.

We can then load the DBpedia ontology:

>>> dbpedia = get_ontology("http://wikidata.dbpedia.org/↲
ontology/")

We modify the rendering of entities (see 4.9) to display their label:

>>> def render(e):

... return "%s:%s" % (e.name, e.label.en.first())

>>> set_render_func(render)

Chapter 8 Annotations, multilingual texts, and full-text search

200

We can now perform optimized full-text searches in DBpedia, for

example, finding all articles with “French” and “revolution” in their label:

>>> default_world.search(label = FTS("french Revolution"))

[Q1154330:10 August (French Revolution),

 Q207318:French Revolutionary Wars,

 Q7216178:French Revolution,

 [...]]

Note that the very first searches can be long and take a few seconds.

However, when your computer has loaded the indexes into the cache

memory, the following searches will go much faster!

To access the articles, we need to create a namespace (see 4.8) because

these are defined in “http://wikidata.dbpedia.org/resource/” and not

in “http://wikidata.dbpedia.org/ontology/”:

>>> dbpedia_resource = default_world.get_namespace(↲
 "http://wikidata.dbpedia.org/resource/")

We can now access the article Q207318 (“French Revolutionary Wars”,

which is one of the most complete) and request the list of its properties:

>>> revolution = dbpedia_resource.Q207318

>>> list(revolution.get_properties())

[combatant:combatant, date:date, result:result, commander:commander,

place:place of military conflict, territory:territory, label:None,

wikiPageWikiLink:Link from a Wikipage to another Wikipage]

Then we can display the list of people mentioned in the article on

French Revolution Wars:

>>> persons = [i for i in revolution.wikiPageWikiLink

... if isinstance(i, dbpedia.Person)]

Chapter 8 Annotations, multilingual texts, and full-text search

http://wikidata.dbpedia.org/resource/”
http://wikidata.dbpedia.org/ontology/”:

201

>>> print(persons)

[Q10088:Tipu Sultan, Q1096347:Claude Lecourbe,

 Q112009:Michael von Melas, Q128019:Pope Pius VI,

 ...]

When using the DBpedia ontology, there is one point to pay attention

to: DBpedia uses the classic RDFS “comment” annotation to comment

on classes; however, it also redefines its own “comment” property. The

confusion between the two makes it difficult to get comments using the

“entity.comment” syntax! In the event of a collision of names, it is the last

property loaded which takes precedence, therefore that of DBpedia. This is

why, in the following example, we get no comments:

>>> dbpedia.SongWriter.comment # DBpedia comments

[]

To force the use of the RDFS “comment” annotation, two options are

possible. First, we can use the alternative syntax “property[entity]” as in the

following example:

>>> comment[dbpedia.SongWriter] # RDFS comments

['a person who writes songs.', 'een persoon die de muziek en/of

 de tekst voor populaire muzieknummers schrijft.']

We can also redefine the property used by the syntax “entity.annotation”,

as follows:

>>> default_world._props["comment"] = comment

>>> dbpedia.SongWriter.comment # RDFS comments now!

['a person who writes songs.', 'een persoon die de muziek en/of

 de tekst voor populaire muzieknummers schrijft.']

Chapter 8 Annotations, multilingual texts, and full-text search

202

8.8.2  �A search engine for DBpedia
Using the previously created quadstore and full-text search functions, we

can easily make a search engine for DBpedia. We will rely on a dynamic

website with Flask (which we have already used in section 4.12).

The following program loads the DBpedia quadstore, then creates the

dynamic website:

File search_dbpedia.py

from flask import Flask, request

app = Flask(__name__)

from owlready2 import *

QUADSTORE = "dbpedia.sqlite3"

default_world.set_backend(filename = QUADSTORE)

dbpedia = get_ontology("http://wikidata.dbpedia.org/↲
ontology/")

resource = default_world.get_namespace(↲
 "http://wikidata.dbpedia.org/resource/")

@app.route('/')

def page_query():

 html = """

<html><body>

 <form action="/result">

 <input type="text" name="keywords"/>

 <input type="submit"/>

 </form>

</body></html>"""

 return html

@app.route('/result')

def page_result():

Chapter 8 Annotations, multilingual texts, and full-text search

203

 keywords = request.args.get("keywords", "")

 �html = """<html><body>Search results for "%s":
\n""" %↲
keywords

 �keywords =" ".join("%s*" % keyword for keyword in↲
keywords.split())

 articles = default_world.search(label = FTS(keywords))

 html += """"""

 for article in articles:

 html += """%s:%s"""↲
 % (article.name, article.name, article.label.first())

 html += """</body></html>"""

 return html

@app.route('/article/<name>')

def page_article(name):

 article = resource[name]

 html = """<html><body><h2>%s:%s</h2>"""↲
 % (article.name, article.label.first())

 html += """belongs to classes: %s

\n """↲
 % "," .join(repr(clazz) for clazz in article.is_a)

 html += """has link to page:
\n"""

 html += """"""

 for cite in article.wikiPageWikiLink:

 html += """%s:%s"""↲
 % (cite.name, cite.name, cite.label.first())

 html += """</body></html>"""

 return html

import werkzeug.serving

werkzeug.serving.run_simple("localhost", 5000, app)

Chapter 8 Annotations, multilingual texts, and full-text search

204

The website includes three types of pages:

•	 The “query” page (path “/” which corresponds to the

root of the website) displays a search field in an HTML

form. This page is not dynamic in itself; we could have

made it entirely in plain HTML.

•	 The “results” page (path “/results?keywords=<XXX>”)

which displays the search results. We get the keywords

entered by the user, and then we transform them by

adding a star “*” at the end of each keyword. Then we

perform the search with search() and FTS. Finally, we

generate an HTML page displaying the list of results

showing, for each article found, its identifier, its label,

and a link to the corresponding article page.

•	 The “article” page (path “/article/<identifier>/”) which

displays the identifier and the title of the article, the

class or classes to which the article belongs, as well as

the other articles it cites (obtained with the relation

“wikiPageWikiLink”).

Once the program has been executed, the website can be consulted

at the address “http://127.0.0.1:5000”. Here again, the initial loading

of DBpedia and the first searches can be long. However, once the first

searches are done, the next ones will be almost immediate.

The following images show screenshots of the “query” page and the

“results” page of the dynamic website:

Chapter 8 Annotations, multilingual texts, and full-text search

205

8.9  �Summary
In this chapter, you have learned how to read and create OWL annotations

and to use multilingual texts. We have also seen how to access DBpedia in

Python with Owlready.

Chapter 8 Annotations, multilingual texts, and full-text search

207© Lamy Jean-Baptiste 2021
L. Jean-Baptiste, Ontologies with Python, https://doi.org/10.1007/978-1-4842-6552-9_9

CHAPTER 9

Using medical
terminologies with
PyMedTermino
and UMLS
In this chapter, we will see how to import into Python the main medical

terminologies from UMLS, using PyMedTermino, a module allowing these

terminologies to be integrated into Owlready. We will also see how to link

these terminologies together using the UMLS unified concepts (CUI).

9.1  �UMLS
UMLS (Unified Medical Language System) is a collection of more than 400

terminologies from the biomedical field. UMLS also integrates mappings

between the different terminologies. UMLS is produced by the National

Library of Medicine (NLM) in the United States and can be downloaded

free of charge after registering online at the following address:

www.nlm.nih.gov/research/umls/licensedcontent/

umlsknowledgesources.html

https://doi.org/10.1007/978-1-4842-6552-9_9#DOI
https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html
https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html

208

Please note, however, that certain terminologies included in UMLS

cannot be freely used in some countries. This is particularly the case of

SNOMED CT, which is subject to a license paid either by the states or by

institutions or companies.

As of this writing, the most recent version is 2019AB (Full Release

(umls-2019AB-full.zip)). To use UMLS with Owlready and PyMedTermino,

you need to download this file (about 4.8 GB). However, you don’t need to

decompress it (PyMedTermino will do it for you).

9.2  �Importing terminologies from UMLS
PyMedTermino is a Python module allowing access to medical

terminologies. Version 2 of PyMedTermino is directly included in

Owlready, so you don’t need to install it. Please note, however, that

importing UMLS data requires version 3.7 (or higher) of Python (on the

other hand, once UMLS data is imported, you can use it with Python 3.6 if

you wish).

The owlready2.pymedtermino2 module allows you to import all or

part of UMLS data into an Owlready quadstore, via the global function

import_umls():

import_umls("./path/to/umls-2019AB-full.zip",↲
 terminologies = [...],↲
 langs = [...])

The first parameter of the function is the path to the ZIP file containing

UMLS data, which we downloaded previously. In the preceding example,

this is a local path, but it can be a full path, for example, “/home/jblamy/

download/umls-2020AA-full.zip” or “C:\\Downloads\\umls-2020AA-full.

zip”, depending on where you saved this file.

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

209

The second parameter is the list of terminologies to import. If this

parameter is missing, all terminologies are imported. The following

web page lists the terminologies available in UMLS and the associated

codes:

www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html

The third parameter indicates the languages to import, for example,

“en” for English or “fr” for French. If this parameter is missing, all

languages are imported.

We can, for example, import the terminologies CIM10 and SNOMED

CT (in English versions, code ICD10 and SNOMEDCT_US in UMLS), as

well as the CUI UMLS (considered as a pseudo-terminology), as follows:

>>> from owlready2 import *

>>> from owlready2.pymedtermino2 import *

>>> from owlready2.pymedtermino2.umls import *

>>> default_world.set_backend(filename = "pymedtermino.sqlite3")

>>> import_umls("umls-2020AA-full.zip",↲
 terminologies = ["ICD10", "SNOMEDCT_US", "CUI")

>>> PYM = get_ontology("http://PYM/").load()

>>> default_world.save()

UMLS data import takes around 5–10 minutes. “PYM” is here the

abbreviation for “PyMedTermino”.

PyMedTermino activates by default the full-text search (see 8.7) for

the annotation properties label (which corresponds to the terms of

terminological concepts) and synonyms (which corresponds to synonyms).

If you do not want to activate it, you must add the option fts_index =

False when calling the import_umls() function.

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

https://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html

210

Notice that UMLS includes several terminology translations, for

example, ICD10 is available in German (code “DMDICD10”) and Dutch

(code “ICD10DUT”). However, the French translation is not included.

PyMedTermino 2 has a specific module for importing French ICD10 (code

“CIM10”), which can be used as follows:

>>> from owlready2.pymedtermino2.icd10_french import *

>>> import_icd10_french()

>>> default_world.save()

9.3  �Loading terminologies after initial
importation

Obviously, the next time we want to use the imported terminology, we

will no longer need to call the import function. We will now only need the

following three lines:

>>> from owlready2 import *

>>> default_world.set_backend(filename = "pymedtermino.sqlite3")

>>> PYM = get_ontology("http://PYM/").load()

These three lines reload the quadstore (with the set_backend()

method) and the PYM (PyMedTermino) ontology. Do not forget the call

to load(); it is necessary to load the Python methods associated with the

ontology.

9.4  �Using ICD10
PyMedTermino provides access to all terminologies using the same

interface. We will see here the ICD10 and SNOMED CT terminologies, but,

for the other terminologies, the functionalities remain similar.

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

211

The International Classification of Diseases, 10th edition (ICD10),

is a classification of diseases that is widely used. For example, it is used

in France for medico-economic coding in hospitals. ICD10 includes

approximately 12,000 concepts. It is organized in a tree with 21 root

concepts corresponding to the main chapters of diseases: cancer,

infectious diseases, cardiovascular diseases, pulmonary diseases, and so

on. (Notice that, in the United States, ICD9 (9th release) is still largely used.

It can be obtained using the terminology code “ICD9CM”.)

We can obtain the English ICD10 terminology as follows:

>>> ICD10 = PYM["ICD10"]

>>> ICD10

PYM["ICD10"] # ICD10

>>> ICD10.name

'ICD10'

PyMedTermino displays the concepts in the following way:

“terminology[code] # concept label” (for concepts with several labels,

only one is displayed, chosen from the preferred labels). Notice that

the concept label is preceded by a # character and thus is treated as a

comment if you copy-paste the concept in Python. This allows the copy-

paste of PyMedTermino concepts or list of concepts.

Terminology objects and terminology concepts are Owlready classes.

We can therefore use the class methods to manipulate the terminology, for

example, the subclasses() method to obtain the child classes of ICD10,

that is to say, the 21 aforementioned chapters of diseases:

>>> list(ICD10.subclasses())

[ICD10["K00-K93.9"] # Diseases of the digestive system

, ICD10["C00-D48.9"] # Neoplasms

...]

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

212

However, PyMedTermino offers additional attributes and methods to

facilitate the manipulation of terminologies. For example, the children

attribute directly returns the list of child concepts, without having to go

through a generator as before. In addition, the child concepts are sorted by

code (which is not always the case in UMLS), as in the following example:

>>> ICD10.children

[ICD10["A00-B99.9"] # Certain infectious and parasitic diseases

, ICD10["C00-D48.9"] # Neoplasms

, �ICD10["D50-D89.9"] # Diseases of blood and blood-forming organs and

 # �certain disorders involving the immune mechanisms

, �ICD10["E00-E90.9"] # Endocrine, nutritional and metabolic diseases

, ICD10["F00-F99.9"] # Mental, behavioural disorders

, ICD10["G00-G99.9"] # Diseases of the nervous system

, ICD10["H00-H59.9"] # Diseases of the eye and adnexa

, ICD10["H60-H95.9"] # Diseases of the ear and mastoid process

, ICD10["I00-I99.9"] # Diseases of the circulatory system

, ICD10["J00-J99.9"] # Diseases of the respiratory system

, ICD10["K00-K93.9"] # Diseases of the digestive system

, �ICD10["L00-L99.9"] # Diseases of the skin and subcutaneous tissue

, ICD10["M00-M99.9"] # Diseases of the musculoskeletal system and

 # connective tissue

, ICD10["N00-N99.9"] # Diseases of the genitourinary system

, ICD10["O00-O99.9"] # Pregnancy, childbirth and the puerperium

, �ICD10["P00-P96.9"] # Certain conditions originating in the

 # perinatal period

, ICD10["Q00-Q99.9"] # �Congenital malformations, deformations

 # and chromosomal abnormalities

, ICD10["R00-R99.9"] # �Symptoms, signs and abnormal clinical and

 # �laboratory findings, not elsewhere classified

, �ICD10["S00-T98.9"] # Injury, poisoning and certain other

 # consequences of external causes

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

213

, �ICD10["V01-Y98.9"] # External causes of morbidity and mortality

, �ICD10["Z00-Z99.9"] # Factors influencing health status and

 # contact with health services

]

We can go down in the hierarchy and display, for example, the children

of the first chapter (infectious diseases):

>>> ICD10.children[0].children

[ICD10["A00-A09.9"] # Intestinal infectious diseases

, ICD10["A15-A19.9"] # Tuberculosis

, ICD10["A20-A28.9"] # Certain zoonotic bacterial diseases

, ICD10["A30-A49.9"] # Other bacterial diseases

, �ICD10["A50-A64.9"] # Infections with a predominantly sexual mode

 # of transmission

...]

To directly access a concept from its code, we can index the

terminology. For example, in ICD10, the concept coded “I10” corresponds

to essential hypertension:

>>> ICD10["I10"]

ICD10["I10"] # Essential (primary) hypertension

PyMedTermino associates IRI with each concept, in the form “http://

PYM/<terminology>/<code>”, for example:

>>> ICD10["I10"].iri

'http://PYM/ICD10/I10'

The name (or identifier) of the concept therefore corresponds to

its code:

>>> ICD10["I10"].name

'I10'

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

214

The terminology attribute is used to obtain the terminology to which a

concept belongs:

>>> ICD10["I10"].terminology

PYM["ICD10"] # ICD10

The concept labels are accessible via the label annotation for the

preferred labels and the synonyms annotation for the others; these OWL

annotations can be accessed as Python attributes:

>>> ICD10["I10"].label

['Essential (primary) hypertension']

>>> ICD10["I10"].synonyms

[]

Depending on terminologies, the concepts can have one or more

labels and zero or more synonyms (in ICD10, concepts have a single label

and no synonym).

The parents attribute gives access to the parent concepts (i.e.,

more general):

>>> ICD10["I10"].parents

[ICD10["I10-I15.9"] # Hypertensive diseases

]

ICD10 is a monoaxial classification, that is to say that each concept

has only one parent (except the major chapters which do not have one).

However, PyMedTermino is made to be able to handle all terminologies

with the same interface; this is why the parents attribute returns a list of

only one parent in CIM10.

The ancestor_concepts() and descendant_concepts() methods

return the list of ancestor and descendant concepts, respectively. They

are similar to ancestors() and descendants(); however, they return lists

(and not sets), and they only return UMLS concepts (in particular, the list

returned by ancestor_concepts() does not include Thing).

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

215

>>> ICD10["I10"].ancestor_concepts()

[ICD10["I10"] # Essential (primary) hypertension

, ICD10["I10-I15.9"] # Hypertensive diseases

, ICD10["I00-I99.9"] # Diseases of the circulatory system

]

>>> ICD10["I00-I99.9"].descendant_concepts()

[ICD10["I00-I99.9"] # Diseases of the circulatory system

, ICD10["I00-I02.9"] # Acute rheumatic fever

, �ICD10["I00"] # Rheumatic fever without mention of heart↲
involvement

, ICD10["I01"] # Rheumatic fever with heart involvement

, ICD10["I01.0"] # Acute rheumatic pericarditis

, ICD10["I01.1"] # Acute rheumatic endocarditis

, ICD10["I01.2"] # Acute rheumatic myocarditis

, ICD10["I01.8"] # Other acute rheumatic heart disease

, ICD10["I01.9"] # Acute rheumatic heart disease, unspecified

, ICD10["I02"] # Rheumatic chorea

, ICD10["I02.0"] # Rheumatic chorea with heart involvement

...]

By default, these two methods include the initial concept in the lists

they return. If you want to avoid this, you must use the optional parameter

include_self = False, for example:

>>> ICD10["I10"].ancestor_concepts(include_self = False)

[ICD10["I10-I15.9"] # Hypertensive diseases

, ICD10["I00-I99.9"] # Diseases of the circulatory system

]

The descendant_concepts() method also makes it possible to browse

all the concepts of the terminology, when it is applied to the terminology

object (note that this requires loading all CIM10 concepts, i.e., more than

10,000 concepts in memory, which can take some time!):

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

216

>>> ICD10.descendant_concepts(include_self = False)

[ICD10["A00-B99.9"] # Certain infectious and parasitic↲
diseases

, ICD10["A00-A09.9"] # Intestinal infectious diseases

, ICD10["A00"] # Cholera

, ICD10["A00.0"] # Cholera due to Vibrio cholerae 01, biovar↲
cholerae

...]

It is possible to test if one concept is a descendant of another with the

Python function issubclass():

>>> issubclass(ICD10["I10"], ICD10["I00-I99.9"])

True

The search() method allows you to search for concepts by label and

synonym. The character “*” can be used as a wildcard at the end of a word,

and it is possible to include several keywords separated by spaces (as for

the full-text search, on which this method is based, see 8.7). For example,

we can search for all concepts with a word starting with “hypertension”:

>>> ICD10.search("hypertension*")

[ICD10["K76.6"] # Portal hypertension

, ICD10["I15.0"] # Renovascular hypertension

, ICD10["G93.2"] # Benign intracranial hypertension

, ICD10["I10"] # Essential (primary) hypertension

, ICD10["I27.0"] # Primary pulmonary hypertension

, ICD10["I15"] # Secondary hypertension

, ICD10["I15.9"] # Secondary hypertension, unspecified

...]

Similarly, we can search for all concepts with one word starting with

“hypertension” and another with “pulmo”:

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

217

>>> ICD10.search("hypertension* pulmo*")

[ICD10["I27.0"] # Primary pulmonary hypertension

]

9.5  �Using SNOMED CT
The SNOMED CT (Systematized Nomenclature of Medicine—Clinical

Terms) is a richer and more complete medical terminology than ICD10.

Attention, as mentioned previously, the SNOMED CT cannot be used

freely in some countries.

In the same way as for ICD10, we can access the SNOMED CT

terminology and its concepts, as well as the labels, the parents, children,

ancestors, and descendants concepts.

>>> SNOMEDCT_US = PYM["SNOMEDCT_US"]

>>> SNOMEDCT_US["45913009"]

SNOMEDCT_US["45913009"] # Laryngitis

>>> SNOMEDCT_US["45913009"].parents

[SNOMEDCT_US["129134004"] # Inflammatory disorder of

 # upper respiratory tract

, SNOMEDCT_US["363169009"] # Inflammation of specific body organs

, SNOMEDCT_US["60600009"] # Disorder of the larynx

]

>>> SNOMEDCT_US["45913009"].children

[SNOMEDCT_US["1282001"] # Perichondritis of larynx

, SNOMEDCT_US["14969004"] # Catarrhal laryngitis

, SNOMEDCT_US["17904003"] # Hypertrophic laryngitis

...]

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

218

SNOMED CT defines labels (label) but also synonyms (synonyms):

>>> SNOMEDCT_US["45913009"].label

['Laryngitis']

>_>_> SNOMEDCT_US["45913009"].synonyms

['Laryngitis (disorder)']

Unlike ICD10, SNOMED CT authorizes a concept to have several

parents: it is therefore a multiaxial terminology. In the previous example,

the concept “Laryngitis” has three parents: “inflammatory upper

respiratory disease”, “specified organ inflammation”, and “larynx disease”.

In addition, SNOMED CT is not limited to diseases: it also describes the

anatomical structures (organs, parts of organs, etc., called “body structure” or

“finding site”), morphologies (that is to say, the types of diseases, “associated

morphology”), living species, chemical substances, and so on. SNOMED CT

also includes transversal links connecting these different elements.

This information is found in the concept’s parent classes, in the form of

restrictions (of the type some or only):

>>> SNOMEDCT_US["45913009"].is_a

[SNOMEDCT_US["363169009"] # Inflammation of specific body organs

, SNOMEDCT_US["60600009"] # Disorder of the larynx

, SNOMEDCT_US["129134004"] # Inflammatory disorder

 # of upper respiratory tract

, PYM.unifieds.some(CUI["C0023067"] # Laryngitis

), PYM.mapped_to.some(ICD10["J04.0"] # Acute laryngitis

), �PYM.groups.some(<Group 22731_0> # mapped_to=Acute↲
laryngitis

), �PYM.has_associated_morphology.some(SNOMEDCT_US["23583003"]

#Inflammation

), PYM.groups.some(<Group 22731_1>

#has_associated_morphology=Inflammation;↲
 has_finding_site=Laryngeal structure

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

219

), PYM.has_finding_site.some(SNOMEDCT_US["4596009"] # Laryngeal↲
structure

), PYM.unifieds.only(CUI["C0023067"] # Laryngitis

)]

However, restrictions are not easy to deal with. Fortunately, Owlready

allows accessing them as class properties (see 6.3). For example, from

a disease like laryngitis, we can obtain the corresponding anatomical

structures and morphologies:

>>> SNOMEDCT_US["45913009"].has_finding_site

[SNOMEDCT_US["4596009"] # Laryngeal structure

]

>>> SNOMEDCT_US["45913009"].has_associated_morphology

[SNOMEDCT_US["409774005"] # Inflammatory morphology

]

The get_class_properties() method allows you to obtain all the

properties available for a given concept:

>>> SNOMEDCT_US["45913009"].get_class_properties()

{PYM.mapped_to,

 PYM.unifieds,

 PYM.has_associated_morphology,

 PYM.groups,

 PYM.has_finding_site,

 PYM.terminology, rdf-schema.label,

 PYM.synonyms,

 PYM.subset_member,

 PYM.ctv3id,

 PYM.type_id,

 PYM.case_significance_id,

 PYM.definition_status_id,

 PYM.active,

 PYM.effective_time}

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

220

We find in the set of properties the annotations label and synonyms, as

well as has_associated_morphology and has_finding_site.

When several anatomical structures and/or morphologies are

involved, it is interesting to know which morphology applies to which

anatomical structure. Groups allow this. In the following example,

the concept “hepatosplenomegaly” is associated with two anatomical

structures and one morphology:

>>> SNOMEDCT_US["36760000"]

SNOMEDCT_US["36760000"] # Hepatosplenomegaly

>>> SNOMEDCT_US["36760000"].has_finding_site

[SNOMEDCT_US["181268008"] # Entire liver

, SNOMEDCT_US["181279003"] # Entire spleen

]

>>> SNOMEDCT_US["36760000"].has_associated_morphology

[SNOMEDCT_US["442021009"] # Enlargement

]

We may wonder whether the morphology is associated with the first

anatomical structure (i.e., liver), the second (i.e., spleen), or both. Groups

allow answering this question; they are available through the group property:

>>> SNOMEDCT_US["36760000"].groups

[<Group 18807_4> # has_finding_site=Entire liver ;

 # has_associated_morphology=Enlargement

, <Group 18807_3> # has_finding_site=Entire spleen ;

 #has_associated_morphology=Enlargement

, <Group 18807_0> # mapped_to=Hepatomegaly with splenomegaly,

 # not elsewhere classified

]

In the preceding example, we have three groups:

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

221

•	 The first describes an enlargement of the liver.

•	 The second describes an enlargement of the spleen.

•	 The third describes a correspondence with another

terminology, but does not contain an anatomical

structure or morphology.

Therefore, here, the morphology concerns both anatomical structures.

Please note that the exact order of the groups may vary: you will have the

same groups but not necessarily in the same order.

Each group can be queried individually, for example, for the second

group earlier:

>>> SNOMEDCT_US["36760000"].groups[0].get_class_properties()

{PYM.has_associated_morphology,

 PYM.has_finding_site}

>>> SNOMEDCT_US["36760000"].groups[0].has_associated_morphology

[SNOMEDCT_US["442021009"] # Enlargement

]

>>> SNOMEDCT_US["36760000"].groups[0].has_finding_site

[SNOMEDCT_US["181268008"] # Entire liver

]

PyMedTermino also allows you to navigate in the other direction, that

is to say, starting from anatomical structures or morphologies to go toward

diseases. For example, we can get all the diseases involving the vitreous as

follows:

>>> SNOMEDCT_US["181268008"].finding_site_of

[SNOMEDCT_US["80660001"] # Mauriac's syndrome

, SNOMEDCT_US["93369005"] # Congenital microhepatia

, SNOMEDCT_US["192008"] # Congenital syphilitic hepatomegaly

, SNOMEDCT_US["80378000"] # Neonatal hepatosplenomegaly

...]

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

222

A full-text search is, of course, possible in SNOMED CT and works in

the same way as for CIM10.

9.6  �Using UMLS unified concepts (CUI)
UMLS defines unified concepts (CUI, Concept Unique Identifier) allowing

the navigation between terminologies. These CUIs can be imported with

PyMedTermino, using the special terminology code “CUI”. Please note,

when only certain terminologies are imported, PyMedTermino only

imports the CUIs used by the selected terminologies. If you want to have

access to all of the CUIs, you will need to import all UMLS.

>>> CUI = PYM["CUI"]

The unifieds property makes it possible to obtain the unified

concept(s) associated with a concept of any terminology (here we have

taken ICD10):

>>> ICD10["I10"]

ICD10["I10"] # Essential (primary) hypertension

>>> ICD10["I10"].unifieds

[CUI["C0085580"] # Essential hypertension

]

The unified concepts all have a label and synonyms (from imported

terminologies and therefore dependent on the choice of these):

>>> CUI["C0085580"].synonyms

['Essential (primary) hypertension',

 'Idiopathic hypertension',

 'Primary hypertension',

 'Systemic primary arterial hypertension',

 'Essential hypertension (disorder)']

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

223

The originals property is the inverse property of unifieds: it allows

to obtain the concepts of the original terminologies with which a unified

concept is associated:

>>> CUI["C0085580"].originals

[SNOMEDCT_US["59621000"] # Essential hypertension

, ICD10["I10"] # Essential (primary) hypertension

]

These unified concepts allow to navigate between terminologies, as we

will see in the next section.

Finally, the “SRC” pseudo-terminology (abbreviation of sources) lists

all the terminologies available in UMLS and/or PyMedTermino. It is sort of

a “terminology of terminologies”. So, the root concept of PyMedTermino is

http://PYM/SRC/SRC:

>>> PYM["SRC"]["SRC"]

PYM["SRC"] # Metathesaurus Source Terminology Names

>>> PYM["SRC"]["SRC"].iri

'http://PYM/SRC/SRC'

9.7  �Mapping between terminologies
The >> operator allows you to convert from one terminology to another,

using the links existing in UMLS. Note that this operator should not be

confounded with the Python prompt >>> (three > characters vs. two).

This operation is often called “mapping”, “transcoding”, or

“correspondence”. For mapping concepts, PyMedTermino uses UMLS

“mapped_to” relationships when they exist. When they are not present,

PyMedTermino uses the unified concepts (CUI) to navigate between

terminologies. The following example maps the ICD10 concept “E11” to

SNOMED CT:

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

224

>>> ICD10["E11"]

ICD10["E11"] # Non-insulin-dependent diabetes mellitus

>>> ICD10["E11"] >> SNOMEDCT_US

Concepts([

 SNOMEDCT_US["44054006"] # Type 2 diabetes mellitus

])

Here, the ICD10 concept “E11” corresponds to the SNOMEDCT

concept “44054006”, both representing type 2 diabetes. The concept CIM10

“E11” has no “mapped_to” relation; we can verify it as follows:

>>> ICD10["E11"].mapped_to

[]

It is therefore the CUIs that were used to perform the mapping.

We can also map in the reverse direction, from SNOMED CT to ICD10:

>>> SNOMEDCT_US["44054006"] >> ICD10

Concepts([

 �ICD10["E11.9"] # Non-insulin-dependent diabetes mellitus↲
without complications

])

We note that the concept obtained is not the one we had previously

in ICD10 (“E11”, Non-insulin-dependent diabetes mellitus). Indeed,

SNOMED CT considers that the general concept “Type 2 diabetes mellitus”

without any specification of complications corresponds to diabetes

without complications. UMLS has a “mapped_to” relationship for this

SNOMED CT concept, which we can verify as follows:

>>> SNOMEDCT_US["44054006"].mapped_to

[ICD10["E11.9"] # Non-insulin-dependent diabetes mellitus↲
 without complications

]

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

225

PyMedTermino used this relation when mapping from SNOMED CT

to ICD10.

Mapping always returns a set of concepts (described in the next

section). This set can contain several concepts when the starting concept

corresponds to several concepts in the terminology of arrival, as in this

example:

>>> ICD10["N80.0"]

ICD10["N80.0"] # Endometriosis of uterus

>>> ICD10["N80.0"] >> SNOMEDCT_US

Concepts([

 SNOMEDCT_US["784314006"] # Uterine adenomyosis

, SNOMEDCT_US["76376003"] # Endometriosis of uterus

, SNOMEDCT_US["237115002"] # Endometriosis of myometrium

, SNOMEDCT_US["198247003"] # Endometriosis interna

])

9.8  �Manipulating sets of concepts
The PYM.Concepts class is used to create a set of concepts. This class

inherits from Python’s set class (see 2.4.7) and therefore has the same

methods to compute the intersection, union, subtraction, and so on of two

sets. It adds specific methods to terminologies. For example, the lowest_

common_ancestors() method allows computing the closest common

ancestor(s) to several concepts:

>>> PYM.Concepts([ICD10["E11.1"], ICD10["E12.0"]]).lowest_↲
common_ancestors()

Concepts([

 ICD10["E10-E14.9"] # Diabetes mellitus

])

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

226

This method is practical for “generalizing” several concepts and

grouping them into a single, higher-level, concept.

The find() method makes it possible to seek the first concept of a set

which is a descendant of a given concept (including the concept itself). For

example, we can create a set of four concepts:

>>> cs = PYM.Concepts([

... SNOMEDCT_US["49260003"], SNOMEDCT_US["371438008"],

... SNOMEDCT_US["373137001"], SNOMEDCT_US["300562000"],

...])

>>> cs

Concepts([

 SNOMEDCT_US["300562000"] # Genitourinary tract problem

, SNOMEDCT_US["373137001"] # Immobile heart valve

, SNOMEDCT_US["49260003"] # Idioventricular rhythm

, SNOMEDCT_US["371438008"] # Urolith

])

Then, we can search for the presence of a cardiac concept (here,

301095005 is the SNOMED CT code for “Cardiac finding”):

>>> cs.find(SNOMEDCT_US["301095005"])

SNOMEDCT_US["373137001"] # Immobile heart valve

The extract() method is similar, but returns the subset of all the

concepts descending from the concept passed as a parameter, for example,

here, all cardiac concepts:

>>> cs.extract(SNOMEDCT_US["301095005"])

Concepts([

 SNOMEDCT_US["373137001"] # Immobile heart valve

, SNOMEDCT_US["49260003"] # Idioventricular rhythm

])

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

227

The subtract() method returns a new set containing the same concepts,

except those which descend from the concept passed in a parameter. The

subtract_update() method performs the same operation, but modifies the

set passed in a parameter in place, instead of returning a new one.

The keep_most_generic() and keep_most_specific() methods allow

only the most generic or specific concepts to be kept, respectively. In the

following example, the concept SNOMED CT 300562000 (“Genitourinary

tract problem”) has been removed because it is less specific than

371438008 (“Urolith”):

>>> cs.keep_most_specific()

>>> cs

Concepts([

 SNOMEDCT_US["373137001"] # Immobile heart valve

, SNOMEDCT_US["371438008"] # Urolith

, SNOMEDCT_US["49260003"] # Idioventricular rhythm

])

The all_subsets() method returns all the possible subsets of the set,

for example:

>>> cs = PYM.Concepts([

... SNOMEDCT_US["49260003"],

... SNOMEDCT_US["371438008"],

... SNOMEDCT_US["373137001"],

...])

>>> cs.all_subsets()

[Concepts([

]), Concepts([

 SNOMEDCT_US["373137001"] # Immobile heart valve

]), Concepts([

 SNOMEDCT_US["371438008"] # Urolith

]), Concepts([

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

228

 SNOMEDCT_US["373137001"] # Immobile heart valve

, SNOMEDCT_US["371438008"] # Urolith

]), Concepts([

 SNOMEDCT_US["49260003"] # Idioventricular rhythm

]), Concepts([

 SNOMEDCT_US["373137001"] # Immobile heart valve

, SNOMEDCT_US["49260003"] # Idioventricular rhythm

]), Concepts([

 SNOMEDCT_US["49260003"] # Idioventricular rhythm

, SNOMEDCT_US["371438008"] # Urolith

]), Concepts([

 SNOMEDCT_US["373137001"] # Immobile heart valve

, SNOMEDCT_US["49260003"] # Idioventricular rhythm

, SNOMEDCT_US["371438008"] # Urolith

])]

The methods is_semantic_subset(), is_semantic_superset(),

is_semantic_disjoint(), and semantic_intersection() are similar

to homonymous methods of Python sets, but they took into account

hierarchical is-a relations between concepts. In the following example,

the intersection of the two sets is empty but not the semantic intersection,

because the urolith is a urinary problem:

>>> cs1 = PYM.Concepts([SNOMEDCT_US["371438008"]])

>>> cs2 = PYM.Concepts([SNOMEDCT_US["106098005"]])

>>> cs1

Concepts([

 SNOMEDCT_US["371438008"] # Urolith

])

>>> cs2

Concepts([

 SNOMEDCT_US["106098005"] # Urinary system finding

])

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

229

>>> cs1.intersection(cs2)

Concepts([

])

>>> cs1.semantic_intersection(cs2)

Concepts([

 SNOMEDCT_US["371438008"] # Urolith

])

Be careful, however, these semantic operations do not take into

account the possible common descendants of the concepts. In the

following example, the intersection of the concepts “infectious diseases”

and “urinary problems” is empty, while urinary tract infections do exist:

>>> cs1 = PYM.Concepts([SNOMEDCT_US["40733004"]])

>>> cs2 = PYM.Concepts([SNOMEDCT_US["106098005"]])

>>> cs1

Concepts([

 SNOMEDCT_US["40733004"] # Disorder due to infection

])

>>> cs2

Concepts([

 SNOMEDCT_US["106098005"] # Urinary system finding

])

>>> cs1.semantic_intersection(cs2)

Concepts([

])

We will see later (at 10.7) how to achieve a real semantic intersection

that takes into account the common descendants.

PyMedTermino also allows mapping a set of concepts, always with the

operator “>>”. As the mapping operations themselves return a set of concepts,

it is possible to chain these operations. For example, we can map from

SNOMED CT to CIM10 by forcing the passage through the CUI, as follows:

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

230

>>> SNOMEDCT_US["44054006"] >> CUI >> ICD10

Concepts([

 ICD10["E11"] # Non-insulin-dependent diabetes mellitus

])

On the contrary, the direct mapping (as seen earlier) may return a

different result, when the “mapped_to” relationships are present in UMLS:

>>> SNOMEDCT_US["44054006"] >> ICD10

Concepts([

 ICD10["E11.9"] # Non-insulin-dependent diabetes

 # mellitus without complications

])

The passage through the CUI then guarantees a reversible mapping.

9.9  �Importing all terminologies in UMLS
When the terminologies parameter is missing, the import_umls()

function imports all the terminologies present in UMLS. We can therefore

import all UMLS as follows (be careful, this requires at least 20 GB of disk

space, 16 GB of RAM, and more than an hour):

>>> from owlready2 import *

>>> from owlready2.pymedtermino2 import *

>>> from owlready2.pymedtermino2.umls import *

>>> default_world.set_backend(filename = "pymedtermino.sqlite3",

... sqlite_tmp_dir = "/home/jiba/tmp")

>>> import_umls("umls-2020AA-full.zip")

>>> PYM = get_ontology("http://PYM/").load()

Note that, when calling the set_backend() method, we added the

optional sqlite_tmp_dir parameter, which indicates a path to a directory

where to store large temporary files (see 8.8.1).

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

231

Then, to search for concepts in all terminologies at once, the PYM.

search() method can be used:

>>> PYM.search("hypertension*")

[SNOMEDCT_US["123800009"] # Goldblatt hypertension

, SNOMEDCT_US["70272006"] # Malignant hypertension

, ICD10["K76.6"]# Portal hypertension

, SNOMEDCT_US["34742003"] # Portal hypertension

, SNOMEDCT_US["70995007"] # Pulmonary hypertension

, SNOMEDCT_US["28119000"] # Renal hypertension

, ICD10["I15.0"] # Renovascular hypertension

...]

9.10  �Example: Linking the ontology
of bacteria with UMLS

We can now take up the ontology of bacteria and link it to UMLS. For this,

we will create relationships between the concepts of this ontology and

the unified concepts (CUI) of UMLS. Since these are classes, we will use

Owlready’s class properties (see 6.3).

The following lines of code make it possible to link the three classes

of bacteria (Pseudomonas, Streptococcus, and Staphylococcus) to the

corresponding CUI (which we searched for using search()). These

relationships are placed in a new ontology, named “bacteria_umls.owl”.

>>> onto = get_ontology("bacteria.owl").load()

>>> onto_bacteria_umls = get_ontology("http://↲
lesfleursdunormal.fr/static/_downloads/bacteria_umls.owl")

>>> CUI = PYM["CUI"]

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

232

>>> with onto_bacteria_umls:

... onto.Pseudomonas .mapped_to = [CUI["C0033808"]]

... onto.Streptococcus .mapped_to = [CUI["C0038402"]]

... onto.Staphylococcus.mapped_to = [CUI["C0038170"]]

>>> onto_bacteria_umls.save("bacteria_umls.owl")

We have reused the UMLS mapped_to object property for our

relationships.

We can verify that it is indeed a class property, that is to say,

an OWL restriction:

>>> onto.Pseudomonas.mapped_to

[CUI["C0033808"] # Pseudomonas

]

>>> onto.Pseudomonas.is_a

[bacteria.Bacterium,

 bacteria.has_shape.some(bacteria.Rod),

 bacteria.has_shape.only(bacteria.Rod),

 bacteria.has_grouping.some(bacteria.Isolated | bacteria.InPair),

 bacteria.gram_positive.value(False),

 PYM.mapped_to.some(CUI["C0033808"] # Pseudomonas

)]

It is possible to map these CUIs, for example, to SNOMED CT:

>>> SNOMEDCT_US = PYM["SNOMEDCT_US"]

>>> onto.Pseudomonas.mapped_to[0] >> SNOMEDCT_US

Concepts([

 SNOMEDCT_US["5274006"] # Chryseomonas

, SNOMEDCT_US["57032008"] # Pseudomonas

])

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

233

Here, the concept “Pseudomonas” of UMLS corresponds to

Pseudomonas in SNOMED CT, but also to Chryseomonas, a genus of

bacteria which was later attached to the genus Pseudomonas (under the

name of Pseudomonas luteola).

It is also possible to translate the unified concept CUI toward SNOMED

CT and then to recover the associated diseases, via the “causative_agent_

of” relation (which is the inverse of “has_causative_agent”):

>>> diseases = [

... disease

... �for snomedct in onto.Pseudomonas.mapped_to[0] >>↲
SNOMEDCT_US

... for disease in snomedct.causative_agent_of

...]

>>> diseases

[SNOMEDCT_US["127201000119101"] # Septic shock co-occurrent

 # with acute organ dysfunction due to Pseudomonas

, SNOMEDCT_US["16664009"] # Malignant otitis media

, SNOMEDCT_US["448813005"] # Sepsis due to Pseudomonas

...]

This gives us a list of the diseases that the bacteria can cause.

9.11  �Example: A multi-terminology browser
The consultation of medical terminologies is quite possible in a Python

terminal with PyMedTermino; however, it quickly becomes laborious. We

will therefore build a multi-terminological “mini-browser” allowing both

to search for concepts by keywords and to navigate among the various

terminologies. This browser will use the Python Flask module to make

a dynamic website (see 4.12) and will integrate all the terminologies

available in PyMedTermino.

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

234

The following program describes the multi-terminology “mini-browser”:

File termino_browser.py

from owlready2 import *

default_world.set_backend(filename = "pymedtermino.sqlite3")

PYM = get_ontology("http://PYM/").load()

from flask import Flask, url_for, request

app = Flask(__name__)

def repr_concept(concept):

 return """[%s:%s] %s""" % (

 url_for("concept_page", iri = concept.iri),

 concept.terminology.name,

 concept.name,

 concept.label.first())

def repr_relations(entity, border = False):

 if border: html = """<table style="border: 1px solid

#aaa;">"""

 else: html = """<table>"""

 for Prop in entity.get_class_properties():

 for value in Prop[entity]:

 if issubclass(value, PYM.Concept):

 value = repr_concept(value)

 elif issubclass(value, PYM.Group):

 value = repr_relations(value, True)

 html += """<tr><td>%s:""" % Prop.name

 html += """</td><td> %s</td></tr>""" % value

 html += """</table>"""

 return html

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

235

@app.route('/')

def homepage():

 html ="""

<html><body>

 Search in all terminologies:

 <form action="/search">

 <input type="text" name="keywords"/>

 <input type="submit"/>

 </form>

 Or browse the entire hierarchy

</body></html>""" % url_for("concept_page", iri = "http://PYM/↲
SRC/SRC")

 return html

@app.route('/search')

def search_page():

 keywords = request.args.get("keywords", "")

 html = """<html><body>Recherche "%s":
\n""" % keywords

 �keywords = " " .join("%s"* % word for word in keywords.↲
split())

 results = PYM.search(keywords)

 for concept in results:

 html += """%s
""" % repr_concept(concept)

 html += """</body></html>"""

 return html

@app.route('/concept/<path:iri>')

def concept_page(iri):

 concept = IRIS[iri]

 html = """<html><body>"""

 html += """<h2>%s</h2>""" % repr_concept(concept)

 html += """<h3>Ancestor concept (except parents)</h3>"""

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

236

 html += """%s
""" % repr_concept(concept.terminology)

 �ancestors = set(concept.ancestor_concepts(include_self =↲
False))

 ancestors = ancestors - set(concept.parents)

 ancestors = list(ancestors)

 ancestors.sort(key = lambda t: len(t.ancestor_concepts()))

 for ancestor in ancestors:

 html += """%s
""" % repr_concept(ancestor)

 html += """<h3>Parent concepts</h3>"""

 for parent in concept.parents:

 html += """%s
""" % repr_concept(parent)

 html += """<h3>Relations</h3>"""

 html += repr_relations(concept)

 if not concept.name == "CUI":

 html += """<h3>Child concepts</h3>"""

 for child in concept.children:

 html += """%s
""" % repr_concept(child)

 html += """</body></html>"""

 return html

import werkzeug.serving

werkzeug.serving.run_simple("localhost", 5000, app)

The program starts by importing Owlready and loading the quadstore

with PyMedTermino, and then it imports Flask. Then it creates two utility

functions:

•	 repr_concept(), which will be used to represent a

concept in HTML, using its label, terminology, and

code, with a link to the concept page.

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

237

•	 repr_relations(), which will be used to represent in

HTML the (nonhierarchical) relationships of a concept

or a group. The function returns an HTML table with

one row per property and property value. This function

is recursive: if it is called for a concept, it will call itself

for each of the groups of the concept, if necessary.

Then, the program creates three web pages:

•	 The root page (path “/”), which proposes a search field

and a link to the root concept of PyMedTermino.

•	 The search page (path “/search?keywords=entered_

keywords”), which lists the results of the text search.

This page works similarly to the one we created for

DBpedia (see 8.8.2).

•	 The concept page (path “/concept/concept_IRI”),

which displays the properties of a given concept:

ancestor concepts (excluding parents), parent

concepts, relationships, and child concepts.

In order to facilitate the reading, we have removed

the ancestors’ parents, and we have sorted the list

of ancestors according to the number of ancestor

concepts that the ancestor himself has. This allows

having at the beginning of the list the concepts

having fewer ancestors, therefore the most general,

and at the bottom of the list the most specific.

In addition, the display of child concepts has been

deactivated for the “CUI” classification, because it

is not hierarchical. Consequently, all CUIs (more

than 20,000) are direct children of the classification,

which would lead to a page that is far too long!

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

238

The following screenshots show the resulting terminology browser:

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

239

9.12  �Summary
In this chapter, you have learned how to import medical terminologies

from UMLS and how to access them as an ontology. We have seen how

to map concepts from one terminology to another and to design a simple

terminology browser.

Chapter 9 Using medical terminologies with PyMedTermino and UMLS

241© Lamy Jean-Baptiste 2021
L. Jean-Baptiste, Ontologies with Python, https://doi.org/10.1007/978-1-4842-6552-9_10

CHAPTER 10

Mixing Python
and OWL
In this chapter, we will see how to mix Python methods and OWL logical

constructors within the same class.

10.1  �Adding Python methods to
OWL classes

With Owlready, OWL classes are Python classes (almost) like the others.

It is therefore possible to include Python methods in these classes. Here

is a simple example to calculate the price per tablet of a drug from its unit

price (per box) and the number of tablets in the box:

>>> from owlready2 import *

>>> onto = get_ontology("http://test.org/drug.owl#")

>>> with onto:

... class Drug(Thing): pass

...

... class price(Drug >> float, FunctionalProperty):

... pass

... class nb_tablet(Drug >> int, FunctionalProperty):

... pass

https://doi.org/10.1007/978-1-4842-6552-9_10#DOI

242

...

... class Drug(Thing):

... def get_price_per_tablet(self):

... return self.price / self.nb_tablet

Note that the Drug class is defined twice: the first definition is a

forward declaration in order to be able to use the class in the definitions of

the properties (see 5.8). Note also that, since we create a new ontology, we

integrated the separator (here, #) at the end of the ontology IRI (see 5.1).

The method can then be called on the individuals of the class:

>>> my_drug = Drug(price = 10.0, nb_tablet = 5)

>>> my_drug.get_price_per_tablet()

2.0

In ontologies, it is common to use only classes and subclasses, instead

of individuals (this is the case in, e.g., Gene Ontology), because the power

of class representation is greater. In this case, Python allows you to define

“class methods” which will be called on the class (or one of its subclasses)

and which take this class (or subclass) as the first parameter.

Here is the same example as before, but using classes:

>>> with onto:

... class Drug(Thing): pass

...

... class price(Drug >> float, FunctionalProperty):

... pass

... class nb_tablet(Drug >> int, FunctionalProperty):

... pass

...

... class Drug(Thing):

... @classmethod

... def get_price_per_tablet(self):

... return self.price / self.nb_tablet

Chapter 10 Mixing Python and OWL

243

The method can then be called on the class and its subclasses:

>>> class MyDrug(Drug): pass

>>> MyDrug.price = 10.0

>>> MyDrug.nb_tablet = 5

>>> MyDrug.get_price_per_tablet()

2.0

Be careful, however, to make the two types of method (individual and

class) coexist together; it is necessary to use different method names.

10.2  �Associating a Python module
to an ontology

When the ontologies are not created entirely in Python (as we did in the

preceding example) but loaded from an OWL file, the Python methods

can be defined in a separate Python module (.py file). This file can be

imported manually or linked to the ontology via an annotation; in this

case, Owlready will automatically import the Python module when the

ontology is loaded.

For example, the following file, named “bacteria.py”, adds a method in

the Bacterium and Staphylococcus classes of the bacteria ontology:

File bacteria.py

from owlready2 import *

onto = get_ontology("http://lesfleursdunormal.fr/static/↲
_downloads/bacteria.owl#")

with onto:

 class Bacterium(Thing):

 def my_method(self):

 print("It is a bacterium!")

Chapter 10 Mixing Python and OWL

244

 class Staphylococcus(Thing):

 def my_method(self):

 print("It is a staphylococcus!")

Note that we have not loaded the bacteria ontology (i.e., we have

not called .load()) because it will be done by the main program. Note

also that we have not indicated the superclass of Staphylococcus (which

is Bacterium): indeed, it already appears in the OWL file, so there is no

need to assert it a second time here! On the other hand, it is necessary to

mention Thing as a superclass to state that the new class is an OWL class

managed by Owlready and not a usual Python class. Generally, when

creating a separate Python file with the methods, it is preferable to put

only the methods inside and to keep the rest of the ontology (superclasses,

properties, relations, etc.) in OWL to limit redundancy.

10.2.1  �Manual import
We can then load the ontology and manually import the file “bacteria.py”:

>>> from owlready2 import *

>>> onto = get_ontology("bacteria.owl").load()

>>> import bacteria

Then, we create a Staphylococcus, and we call our method:

>>> my_bacterium = onto.Staphylococcus()

>>> my_bacterium.my_method()

It is a staphylococcus!

Chapter 10 Mixing Python and OWL

245

10.2.2  �Automatic import
For this, it is necessary to edit the ontology with Protégé and add an

annotation indicating the name of the associated Python module.

This annotation is called python_module, and it is defined in the

ontology “owlready_ontology.owl”, which it is necessary to import.

Here are the steps:

	 1.	 Launch Protégé and load the bacteria ontology.

	 2.	 Go to the “Active Ontology” tab of Protégé.

	 3.	 Import the ontology “owlready_ontology” by

clicking the “+” button to the right of “Direct

imports”. The ontology can be imported from the

local copy which is in the installation directory of

Owlready or from its IRI: www.lesfleursdunormal.

fr/static/_downloads/owlready_ontology.owl.

Figure 10-1.  “python_module” annotation in Protégé

Chapter 10 Mixing Python and OWL

http://www.lesfleursdunormal.fr/static/_downloads/owlready_ontology.owl
http://www.lesfleursdunormal.fr/static/_downloads/owlready_ontology.owl

246

	 4.	 Add an annotation in the “Ontology header”

section. The annotation type is “python_module”,

and the value is the name of the module, here

bacteria (see Figure 10-1). You may also use a

Python package, for example, “my_module.my_

package”.

Now, we no longer need to import the “bacteria” module: Owlready

does this automatically each time the bacteria ontology is loaded. In

the following example, we have saved the bacteria ontology (with the

annotation “python_module”) in a new OWL file called “bacteria_owl_

python.owl”:

>>> from owlready2 import *

>>> onto = get_ontology("bacteria_owl_python.owl").load()

>>> my_bacterium = onto.Staphylococcus()

>>> my_bacterium.my_method()

It is a staphylococcus!

10.3  �Polymorphism with type inference
We have seen in section 7.2 that, during the reasoning, the classes

of individuals and the superclasses of classes could be modified. In

this case, the available methods may change. In addition, in the case

of polymorphism, that is to say, when several classes implement the

same method differently, the implementation of the method for a

given individual or class may change. This is “polymorphism with type

inference”.

Chapter 10 Mixing Python and OWL

247

Here is a simple example:

>>> my_bacterium = onto.Bacterium(gram_positive = True,

... has_shape = onto.Round(),

... has_grouping = [onto.InCluster()])

>>> my_bacterium.my_method()

It is a bacterium!

We created a bacteria. When we execute the method, it is the

implementation of the class Bacterium which is therefore called. We will

now call the reasoner.

>>> sync_reasoner()

The reasoner deduced that the bacterium is in fact a Staphylococcus

(due to its relationships). Now, if we call the method, it is the

implementation of the Staphylococcus class which is called:

>>> my_bacterium.my_method()

It is a staphylococcus!

10.4  �Introspection
Introspection is an advanced object programming technique which

consists in “analyzing” an object without knowing it, for example, in order

to obtain the list of its attributes and their values.

For the introspection of individuals, the get_properties() method

allows obtaining the list of properties for which the individual has at least

one relation.

>>> onto.unknown_bacterium.get_properties()

{bacteria.has_shape,

 bacteria.has_grouping,

 bacteria.gram_positive,

 bacteria.nb_colonies}

Chapter 10 Mixing Python and OWL

248

It is then possible to obtain and/or modify these relations. The

getattr(object, attribute) and setattr(object, attribute, value)

Python functions allow you to read or write an attribute of any Python

object when the name of the attribute is known in a variable (see 2.9.4), for

example:

>>> for prop in onto.unknown_bacterium.get_properties():

... print(prop.name, "=",

... getattr(onto.unknown_bacterium, prop.python_name))

has_grouping = [bacteria.in_cluster1]

has_shape = bacteria.round1

gram_positive = True

nb_colonies = 6

The returned values are the same as with the usual syntax “individual.

property”: it is a single value for the functional properties and a list of

values for the other properties. However, when doing introspection, it is

often easier to treat all properties generically, whether they are functional

or not. In this case, the alternative syntax “property[individual]” is

preferable because it always returns a list of values, even when called on

functional properties, for example:

>>> for prop in onto.unknown_bacterium.get_properties():

... print(prop.name, "=", prop[onto.unknown_bacterium])

has_grouping = [bacteria.in_cluster1]

has_shape = [bacteria.round1]

gram_positive = [True]

nb_colonies = [6]

For class introspection, the get_class_properties() method works

similarly to that of individuals. It returns the properties for which the class

has at least one existential restriction (or universal, depending on the type

of class property; see 6.3):

Chapter 10 Mixing Python and OWL

249

>>> onto.Pseudomonas.get_class_properties()

{bacteria.gram_positive,

 bacteria.has_shape,

 bacteria.has_grouping}

Owlready considers the parent classes, but also the equivalent classes.

The syntax “property[class]” can be used to obtain and/or modify the

existential restrictions of classes.

Finally, the INDIRECT_get_properties() and INDIRECT_get_class_

properties() methods work in the same way, but also return indirect

properties (i.e., inherited from a parent class).

In addition, the constructs() method allows you to browse all the

constructors that refer to a class or a property. For example, we can look

for the constructors referring to the InSmallChain class:

>>> list(onto.InSmallChain.constructs())

[bacteria.Bacterium

 & bacteria.has_shape.some(bacteria.Round)

 & bacteria.has_shape.only(bacteria.Round)

 & bacteria.has_grouping.some(bacteria.InSmallChain)

 & bacteria.has_grouping.only(Not(bacteria.Isolated))

 & bacteria.gram_positive.value(True)]

Here, we get only one construct, which is an intersection including an

existential restriction with the class InSmallChain as value. We can then

use this constructor’s subclasses() method to get a list of all the classes

that use it:

>>> constructor = list(onto.InSmallChain.constructs())[0]

>>> constructor.subclasses()

[bacteria.Streptococcus]

We thus find the Streptococcus class in which we had placed this

restriction (see 3.4.8).

Chapter 10 Mixing Python and OWL

250

10.5  �Reading restrictions backward
The restrictions make it possible to define relationships at the level of

the classes of the ontology, for example, “Pseudomonas has_shape some

Rod”. Owlready provides easy access to these relationships with the syntax

“Class.property” (see 4.5.4):

>>> onto.Pseudomonas.has_shape

bacteria.Rod

But how to read this existential restriction “backward”, that is to say,

from the Rod class, go back to the Pseudomonas class? Even if we had

defined the reverse property, which we could call “is_shape_of”, it would

not answer our question, as the following example shows:

>>> with onto:

... class is_shape_of(ObjectProperty):

... inverse = onto.has_shape

>>> onto.Rod.is_shape_of

[]

Indeed, from a logical point of view, the following two propositions are

different:

•	 “Pseudomonas has_shape some Rod”

•	 “Rod is_shape_of some Pseudomonas”

The first indicates that all Pseudomonas have a Rod shape, which

is true. The second indicates that all Rod shapes are the shape of a

Pseudomonas, which is not the same meaning (and is not true). For

example, the Rod shape of a rugby ball is not the shape of a Pseudomonas.

Similarly, for the following two propositions:

•	 “Nucleus is_part_of some Cell”

•	 “Cell has_part some Nucleus”

Chapter 10 Mixing Python and OWL

251

The first indicates that every nucleus is part of a cell. The second

indicates that every cell has a nucleus, which is different: in biology, the

first proposition is true, while the second is false (e.g., bacteria are cells

without nuclei).

However, it is sometimes useful to be able to read existential

relationships backward. Owlready allows it: this can be done by combining

the constructs() and subclasses() methods, as we did in the previous

section. The inverse_restrictions() method automates this:

>>> set(onto.Rod.inverse_restrictions(onto.has_shape))

{bacteria.Pseudomonas, bacteria.Bacillus}

Note that we used set() to display the generator returned by inverse_

restrictions(), after removing the duplicates.

10.6  �Example: Using Gene Ontology and
managing “part-of” relations

Gene Ontology (GO) is an ontology widely used in bioinformatics

(see 4.7). GO consists of three parts: biological processes, molecular

functions, and cell components. This third part describes the

different elements of a cell: membranes, nucleus, organelles (such as

mitochondria), and so on. It is particularly complex to manage because it

includes both a hierarchy of “classic” inheritance using is-a relationships

and a “part-of” relationship hierarchy. In this second hierarchy, called

meronymy, the cell is decomposed into subparts, then into sub-subparts,

and so on. The root of this hierarchy is therefore the entire cell, and the

leaves the indivisible parts.

Chapter 10 Mixing Python and OWL

252

OWL and Owlready have relationships and methods to manage the

inheritance hierarchy (subclasses(), descendants(), ancestors(),

etc.; see 4.5.3). On the other hand, there is no standard OWL relation for

meronymy nor specific methods in Owlready. We will see here how to add

to the GO classes methods to access the subparts and super-parts, taking

into account both the part-of and the is-a relations.

GO being quite large (almost 200 MB), loading takes several tens of

seconds or even a few minutes, depending on the power of the computer

and the download time of the OWL file. We will therefore load GO and

store the Owlready quadstore in a file (see 4.7). In addition, we will use

manual import here to associate our Python methods with OWL classes

(see 10.2.1), so as not to have to modify GO by adding a “python_module”

annotation.

GO uses arbitrary identifiers which are not directly understandable by

humans. The following table summarizes the GO identifiers that we will

need later:

GO identifier Label

GO_0005575 cellular_component

BFO_0000050 part of

BFO_0000051 has_part

File go_part_of.py

from owlready2 import *

default_world.set_backend(filename = "quadstore.sqlite3")

go = get_ontology("http://purl.obolibrary.org/obo/go.owl#").↲
load()

obo = go.get_namespace("http://purl.obolibrary.org/obo/")

default_world.save()

Chapter 10 Mixing Python and OWL

253

def my_render(entity):

 return "%s:%s" % (entity.name, entity.label.first())

set_render_func(my_render)

with obo:

 class GO_0005575(Thing):

 @classmethod

 def subparts(self):

 results = list(self.BFO_0000051)

 �results.extend(self.inverse_restrictions↲
(obo.BFO_0000050))

 return results

 @classmethod

 def transitive_subparts(self):

 results = set()

 for descendant in self.descendants():

 results.add(descendant)

 for subpart in descendant.subparts():

 �results.update(subpart.transitive_↲
subparts())

 return results

 @classmethod

 def superparts(self):

 results = list(self.BFO_0000050)

 �results.extend(self.inverse_restrictions(obo.↲
BFO_0000051))

 return results

 @classmethod

 def transitive_superparts(self):

 results = set()

 for ancestor in self.ancestors():

Chapter 10 Mixing Python and OWL

254

 �if not issubclass(ancestor, GO_0005575):↲
continue

 results.add(ancestor)

 for superpart in ancestor.superparts():

 if issubclass(superpart, GO_0005575):

 �results.update(superpart.transitive_↲
superparts())

 return results

This module defines four class methods in the class GO_0005575

(i.e., cellular_component). subparts() allows obtaining all the subparts

of the component. This method takes into account the relationships

BFO_0000051 (has-part) but also the relationships BFO_0000050 (part-

of) read backward, contrary to what we would have obtained with

.INDIRECT_BFO_0000051 (see 6.3). The transitive_subparts() method

returns the subparts in a transitive manner, taking into account the child

classes and the transitivity (if A is a subpart of B and B is a subpart of

C, then A is also a subpart of C). The superparts() and transitive_

superparts() methods work the same way for super-parts.

We can then import this module and access GO and “part-of”

relationships. In the following example, we are looking at the part-of

relationships of the nucleolus, which is a component located in the

nucleus of the cell:

>>> from owlready2 import *

>>> from go_part_of import *

>>> nucleolus = go.search(label = "nucleolus")[0]

>>> print(nucleolus.subparts())

[GO_0005655:nucleolar ribonuclease P complex,

 GO_0030685:nucleolar preribosome,

 GO_0044452:nucleolar part,

Chapter 10 Mixing Python and OWL

255

 GO_0044452:nucleolar part,

 GO_0101019:nucleolar exosome (RNase complex)]

>>> print(nucleolus.superparts())

[GO_0031981:nuclear lumen]

Here, direct relationships (without taking transitivity into account) are

not very informative. Transitive relationships are much richer:

>>> nucleolus.transitive_subparts()

{GO_0034388:Pwp2p-containing subcomplex of 90S preribosome,

 GO_0097424:nucleolus-associated heterochromatin,

 GO_0005736:DNA-directed RNA polymerase I complex,

 GO_0005731:nucleolus organizer region,

 GO_0101019:nucleolar exosome (RNase complex),

 [...] }

>>> nucleolus.transitive_superparts()

{GO_0031981:nuclear lumen,

 GO_0005634:nucleus,

 GO_0043226:organelle,

 GO_0044464:cell part,

 GO_0005623:cell,

 GO_0005575:cellular_component,

 [...] }

10.7  �Example: A “dating site” for proteins
Now, we will use the functionality of the “go_part_of.py” module to create

a “dating site” for proteins. This site allows you to enter two protein names,

and the site determines in which compartments of the cell they can meet

(if an encounter is possible!). From a biological point of view, this is

important because two proteins that do not have a common “meeting site”

cannot interact together.

Chapter 10 Mixing Python and OWL

256

For this, we will use

•	 The Flask Python module to make a dynamic website

(see 4.12).

•	 The MyGene Python module to perform searches

on the MyGene server and retrieve the GO concepts

associated with each of the two proteins. This module

allows you to do search on genes (and the proteins they

code). MyGene is used as follows:

import mygene

mg = mygene.MyGeneInfo()

dico = mg.query(’name:"<gene_name>"’,

 fields = "<searched fields>",

 species = "<species>",

 �size = <number of genes to

search for>)

The call to MyGene returns a dictionary which itself

contains lists and other dictionaries. For example,

we can search for all of the GO terms associated

with insulin as follows:

>>> import mygene

>>> mg = mygene.MyGeneInfo()

>>> dict = mg.query(’name:"insulin"’,

... fields = "go.CC.id,go.MF.id,go.BP.id,"

... species = "human",

... size = 1)

>>> dict

{’max_score’: 13.233688, ’took’: 17, ’total’: 57,

’hits’: [{’_id’: ’3630’, ’_score’: 13.233688,

Chapter 10 Mixing Python and OWL

257

 ’go’: {’BP’: [{’id’: ’GO:0002674’},

 �{’id’: ’GO:0006006’}, [...]

]}}]}

“Go.CC.id”, “go.MF.id”, and “go.BP.id” represent

the three main parts of GO (cellular components,

molecular functions, and biological process,

respectively). For our dating site, we will only use

“CC”. Although they originate from Gene Ontology,

these actually describe the localization in the cell of

the gene product, that is, the protein (in general),

and not the gene itself (the genes normally remain

in the nucleus, for eukaryotic cells).

More information is available on the MyGene

website:

http://docs.mygene.info/en/latest/

•	 Owlready and Gene Ontology (GO) to make the

semantic intersection of the GO terms describing

the cellular compartments of the two proteins. A

“simple” intersection (in the set sense of the term) is

not sufficient: the intersection must take into account

both the “is-a” relations of inheritance and the “part-

of” relations. For example, a protein A present only

in the membranes and a protein B present only in

the mitochondria may meet in the membrane of the

mitochondria. Indeed, the mitochondria membrane

is a membrane, and it is a part of the mitochondria, as

shown in the following diagram:

Chapter 10 Mixing Python and OWL

http://docs.mygene.info/en/latest/

258

The following program describes the protein dating site. It begins by

importing and initializing all of the modules:

•	 Owlready

•	 The “go_part_of” module that we created in the

previous section

•	 Flask

•	 MyGene

Then, the search_protein() function is defined. It takes as input

a protein name (in English), such as “insulin”, and returns all of the GO

terms of the cellular component type (“CC”) associated with it in MyGene.

For this, we check that at least one result (hit in English) is found, and then

we get the “CC”. If only one CC is found, MyGene returns it; otherwise, it

is a list. To facilitate processing, we systematically create a list called cc.

Then we go through this list and extract the GO identifier. The identifiers

returned by MyGene are of the form “GO: 0002674” and not “GO_0002674”

as in the OWL version of GO. So we replace all “:” with “_”. Finally,

we recover the concept of the corresponding ontology using the obo

namespace (which was imported from the go_part_of module).

Chapter 10 Mixing Python and OWL

259

The semantic_intersection() function performs the semantic

intersection of two sets containing GO concepts of cellular components in

four steps:

	 1.	 We create two sets, subparts1 and subparts2,

containing the components associated with each

of the two proteins as well as their subparts in a

transitive way. For this, we reuse the static method

transitive_subparts() that we defined in the module

go_part_of.py in the previous section. We then have

the sets of all the components where each of the two

proteins can be encountered, taking into account

the is-a and part-of relations.

	 2.	 We compute the intersection of these two sets with

the operator “&” (see 2.4.7 for sets in Python), and

we call the result common_components.

	 3.	 We now have to simplify the common_components set.

Indeed, it includes the concepts that we are looking

for, but also all their descendants and their subparts

(in the previous example with “membrane” and

“mitochondria”, we therefore have “membrane of

the mitochondria” but also “inner membrane of

the mitochondria” and “outer membrane of the

mitochondria”). In order to speed up the processing

of the next step, we first create a cache (using a

dictionary). This cache matches each GO concept

in common_components with all of its (transitive)

subparts.

	 4.	 We create a new set, largest_common_components,

which is empty at the beginning. We add to it all

the concepts of common_components which is not a

Chapter 10 Mixing Python and OWL

260

subpart of another concept in common_components.

Note the use of “else” in the “for” loop, which

allows you to execute instructions when the loop

has iterated over all items (that is to say, no “break”

has been encountered; see 2.6). Finally, we return

largest_common_components.

The rest of the program defines two web pages with Flask. The first

(path “/”) is a basic form with two text fields to enter the names of the

proteins and a button to validate. The second (path “/result”) computes

and displays the result. It first calls the search_protein() function twice,

once for each protein, then the semantic_intersection() function.

Finally, it generates a web page displaying the components associated with

the first protein, the second, and the components where they are likely to

meet.

File dating_site.py

from owlready2 import *

from go_part_of import *

from flask import Flask, request

app = Flask(__name__)

import mygene

mg = mygene.MyGeneInfo()

def search_protein(protein_name):

 �r = mg.query(’name:"%s"’ % protein_name, fields =↲
"go.CC.id", sspecies = "human", size = 1)

 if not "go" in r["hits"][0]: return set()

 cc = r["hits"][0]["go"]["CC"]

 if not isinstance(cc, list): cc = [cc]

Chapter 10 Mixing Python and OWL

261

 components = set()

 for dict in cc:

 go_id = dict["id"]

 go_term = obo[go_id.replace(":", "_")]

 if go_term: components.add(go_term)

 return components

def semantic_intersection(components1, components2):

 subparts1 = set()

 for component in components1:

 subparts1.update(component.transitive_subparts())

 subparts2 = set()

 for component in components2:

 subparts2.update(component.transitive_subparts())

 common_components = subparts1 & subparts2

 cache = { component: component.transitive_subparts()↲
 for component in common_components }

 largest_common_components = set()

 for component in common_components:

 for component2 in common_components:

 if (not component2 is component) and↲
 (component in cache[component2]): break

 else:

 largest_common_components.add(component)

 return largest_common_components

@app.route(’/’)

def entry_page():

 html = """

Chapter 10 Mixing Python and OWL

262

<html><body>

 <form action="/result">

 Protein 1: <input type="text" name="prot1"/>

 Protein 2: <input type="text" name="prot2"/>

 <input type="submit"/>

 </form>

</body></html>"""

 return html

@app.route(’/result’)

def result_page():

 prot1 = request.args.get("prot1", " ")

 prot2 = request.args.get("prot2", " ")

 components1 = search_protein(prot1)

 components2 = search_protein(prot2)

 �common_components = semantic_intersection(components1,↲
components2)

 html = """<html><body>"’"

 html += """<h3>Components for protein #1 (%s)</h3>""" % prot1

 if components1:

 html += "
".join(sorted(str(component)↲
 for component in components1))

 else:

 html += "(none)
"

 �html += """<h3>Components for protein #2 (%s)</h3>""" %↲
prot2

 if components2:

 html += "
".join(sorted(str(component)↲
 for component in components2))

Chapter 10 Mixing Python and OWL

263

 else:

 html += "(none)
"

 html += """<h3>Possible dating sites</h3>"""

 if common_components:

 html += "
".join(sorted(str(component)↲
 for component in common_components))

 else:

 html += "(none)
"

 html += """</body></html>"""

 return html

import werkzeug.serving

werkzeug.serving.run_simple("localhost", 5000, app)

In order to test our dating site, here are some examples of protein

names: trypsin, cytochrome C, insulin, insulin-degrading enzyme, insulin

receptor, glucagon, hemoglobin, elastase, granzyme B, decorin, beta-2-

microglobulin, and so on.

The following screenshots show the dating site obtained and its use:

Chapter 10 Mixing Python and OWL

264

10.8  �Summary
In this chapter, you have learned how to mix Python and OWL in order to

associate Python methods with an OWL class having a rich semantics. We

have also seen how to perform introspection on OWL classes and entities.

Chapter 10 Mixing Python and OWL

265© Lamy Jean-Baptiste 2021
L. Jean-Baptiste, Ontologies with Python, https://doi.org/10.1007/978-1-4842-6552-9_11

CHAPTER 11

Working with RDF
triples and worlds
In this chapter, we will see how to directly access Owlready’s RDF

quadstore and how to create several isolated “worlds”, each having their

own quadstore.

11.1  �RDF triples
RDF (Resource Description Framework) is a graph model for the formal

description of resources and metadata. In particular, any OWL ontology

can be expressed in the form of an RDF graph. An RDF graph consists of

a set of RDF triples of the form (subject, predicate, object). The predicate

corresponds to a property in the OWL sense. In the ontology of bacteria, two

examples of triples describing the individual “unknown_bacterium” are

(http://lesfleursdunormal.fr/static/_downloads/bacteria.↲
owl#unknown_bacterium,

 http://www.w3.org/1999/02/22-rdf-syntax-ns#type,

 �http://lesfleursdunormal.fr/static/_downloads/bacteria.↲
owl#Bacterium)

(http://lesfleursdunormal.fr/static/_downloads/bacteria.↲
owl#unknown_bacterium,

https://doi.org/10.1007/978-1-4842-6552-9_11#DOI

266

 �http://lesfleursdunormal.fr/static/_downloads/bacteria.↲
owl#gram_positive, true)

The first triple indicates the class to which the individual belongs, via

the RDF predicate “type”, and the second indicates the Gram status of the

bacterium.

Other more complex OWL constructors, such as class restrictions, can

be described using several RDF triples and blank nodes in the graph. For

example, the restriction “gram_positive value false” of the Pseudomonas

class is translated into four RDF triples, as follows:

(http://lesfleursdunormal.fr/static/_downloads/bacteria.↲
owl#Pseudomonas,

 http://www.w3.org/1999/02/22-rdf-syntax-ns#type,

 _:7)

(_:7,

 http://www.w3.org/1999/02/22-rdf-syntax-ns#type,

 http://www.w3.org/2002/07/owl#Restriction)

(_:7,

 http://www.w3.org/2002/07/owl#onProperty,

 �http://lesfleursdunormal.fr/static/_downloads/bacteria.↲
owl#gram_positive)

(_:7,

 http://www.w3.org/2002/07/owl#hasValue,

 false)

Here, “_:7” is a blank node (i.e., an anonymous entity). The name of

this node is not meaningful (and may vary from execution to execution);

only the relationships in which it participates are important.

Chapter 11 Working with RDF triples and worlds

267

Owlready allows displaying all RDF triples of an ontology with the

dump() method:

>>> from owlready2 import *

>>> onto = get_ontology("bacteria.owl").load()

>>> onto.graph.dump()

<http://lesfleursdunormal.fr/static/_downloads/bacteria.owl>↲
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>↲
 <http://www.w3.org/2002/07/owl#Ontology> .

<http://lesfleursdunormal.fr/static/_downloads/bacteria.↲
owl#Shape>↲
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>↲
 <http://www.w3.org/2002/07/owl#Class> .

[...]

dump() can also be called on default_world in order to display all the

RDF triples present in the quadstore (i.e., default_world.graph.dump())

11.2  �Manipulating RDF triples with RDFlib
11.2.1  �Reading RDF triples
RDFlib is a Python module that allows you to manipulate RDF graphs and

triples. For the OWL ontologies being stored in an RDF graph, we can use

RDFlib to manipulate this graph. However, unlike Owlready, RDFlib does

not take into account the semantics specific to OWL and therefore does

not allow to take advantage of the expressiveness of OWL or to carry out

automatic reasoning.

Chapter 11 Working with RDF triples and worlds

268

Owlready uses a different quadstore than that of RDFlib. However,

the Owlready quadstore can be made compatible with RDFlib with the

as_rdflib_graph() method, as follows:

>>> from rdflib import *

>>> graph = default_world.as_rdflib_graph()

The resulting graph object is an RDFlib-compatible quadstore.

RDFlib graphs are composed of three elements: entities (identified by

a URI and created with the URIRef() function), blank nodes (created with

the BNode() function), and data (integer or real numbers, character strings,

etc. grouped under the name literals and created with the Literal()

function). The triples(subject, predicate, object) method of the

RDF graph allows you to browse a subset of the triples; each of the three

parameters can take the value None, which is treated as a wildcard. So, to

browse the set of triples having a given subject, we will pass the value None

for the two parameters predicate and object.

For example, we can display all RDF triples about the Staphylococcus

class, as follows (NB: line breaks have been added for easier reading, but

will not appear on the screen if you run this example):

>>> list(graph.triples((URIRef("http://lesfleursdunormal.fr/↲
static/_downloads/bacteria.owl#Staphylococcus"), None, None)))

[(rdflib.term.URIRef('http://lesfleursdunormal.fr/static/↲
 _downloads/bacteria.owl#Staphylococcus'),

 �rdflib.term.URIRef('http://www.w3.org/1999/02/22-rdf-syntax-↲
ns#type'),

 rdflib.term.URIRef('http://www.w3.org/2002/07/owl#Class')),

 (rdflib.term.URIRef('http://lesfleursdunormal.fr/static/↲
 _downloads/bacteria.owl#Staphylococcus'),

 �rdflib.term.URIRef('http://www.w3.org/2000/01/rdf-↲
schema#subClassOf'),

Chapter 11 Working with RDF triples and worlds

269

 rdflib.term.URIRef('http://lesfleursdunormal.fr/static/↲
 _downloads/bacteria.owl#Coccus')),

 (rdflib.term.URIRef('http://lesfleursdunormal.fr/static/↲
 _downloads/bacteria.owl#Staphylococcus'),

 �rdflib.term.URIRef('http://www.w3.org/2002/07/↲
owl#equivalentClass'),

 rdflib.term.BNode('20'))

]

11.2.2  �Creating new RDF triples with RDFlib
RDFlib allows you to access triples, but also to create new ones with the

add((subject, predicate, object)) method. When adding triples, it

is necessary to indicate in which ontology they will be added. This can be

done in two different ways:

•	 Either in the manner of Owlready, with a “with

ontology: ...” block:

>>> with onto:

... graph.add((

... URIRef("http://www.test.org/t.owl#MyClass"),

... �URIRef("http://www.w3.org/1999/02/22-rdf-↲
syntax-ns#type"),

... �URIRef("http://www.w3.org/2002/07/↲
owl#Class"),

...))

•	 Or like RDFlib, using a contextual graph that we obtain

with the get_context() method:

>>> graph2 = graph.get_context(onto)

>>> graph2.add((

Chapter 11 Working with RDF triples and worlds

270

... URIRef("http://www.test.org/t.owl#MyClass2"),

... �URIRef("http://www.w3.org/1999/02/22-rdf-↲
syntax-ns#type"),

... URIRef("http://www.w3.org/2002/07/owl#Class"),

...))

The get_context() method takes as a parameter either the Owlready

ontology as in the preceding example or its IRI (in the form of a URIRef

object from RDFlib), as in the following example:

>>> graph2 = graph.get_context(URIRef("http://↲
lesfleursdunormal.fr/static/_downloads/bacteria.owl"))

RDF blank nodes can be created using the graph.BNode() method,

as follows:

>>> with onto:

... new_blank_node = graph.BNode()

The blank node can then be used with RDFlib:

>>> with onto:

... graph.add((

... URIRef("http://www.test.org/t.owl#MyClass"),

... �URIRef("http://www.w3.org/1999/02/22-rdf-syntax-↲
ns#type"),

... new_blank_node,

...))

Please note adding RDF triples via RDFlib may not update the

corresponding objects in Owlready if they have already been loaded from

the quadstore. On the other hand, if the objects have not been loaded, it is

possible to do so after their creation using RDFlib.

Chapter 11 Working with RDF triples and worlds

271

11.2.3  �Removing RDF triples with RDFlib
Finally, RDFlib allows you to delete triples with the remove((subject,

predicate, object)) method:

>>> graph.remove((

... URIRef("http://www.test.org/t.owl#MyClass"),

... �URIRef("http://www.w3.org/1999/02/22-rdf-syntax-↲
ns#type"),

... URIRef("http://www.w3.org/2002/07/owl#Class"),

...))

The remove() method accepts the use of None as a wildcard for the

subject, the predicate, and/or the object. For example, we can delete all

triples with the subject “http://www.test.org/t.owl#MyClass2” as follows:

>>> graph.remove((

... URIRef("http://www.test.org/t.owl#MyClass2"),

... None,

... None,

...))

Be careful, again, deleting RDF triples via RDFlib may not update the

corresponding objects in Owlready.

11.3  �Performing SPARQL requests
SPARQL (SPARQL Protocol and RDF Query Language) is a query language

for searching in an RDF graph. This language is a bit like the SQL

(Structured Query Language) of relational databases, but it is devoted to

RDF graph databases.

RDFlib includes a SPARQL engine, which can be used with Owlready.

Chapter 11 Working with RDF triples and worlds

http://www.test.org/t.owl#MyClass2

272

11.3.1  �Searching with SPARQL
SPARQL allows you to do more complex searches than the search()

method of Owlready; however, for simple searches, it is better to use

search() because the performance is better.

The query() method of the RDFlib graph object allows you to perform

a SPARQL query and returns the result in RDFlib format (that is to say, in

the form of URIRef, BNode, and Literal). The WHERE clause of the query

is made of one or more RDF triples, which can contain entities (identified

by their IRI) but also variables, whose names are prefixed with “?”. In the

following example, we are looking for all the entities ?b being of the class

Bacterium, where ?b is a variable:

>>> graph = default_world.as_rdflib_graph()

>>> list(graph.query("""

... SELECT ?b WHERE {

... ?b

... <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

... �<http://lesfleursdunormal.fr/static/_downloads/bacteria.↲
owl#Bacterium>.

... }"""))

[(rdflib.term.URIRef('http://lesfleursdunormal.fr/static/↲
_downloads/bacteria.owl#unknown_bacterium'),)]

The query_owlready() method works the same way, but returns

the result in Owlready format (i.e., as an Owlready object or as Python

datatypes):

>>> list(graph.query_owlready("""

... SELECT ?b WHERE {

... ?b

... <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

Chapter 11 Working with RDF triples and worlds

273

... �<http://lesfleursdunormal.fr/static/_downloads/bacteria.↲
owl#Bacterium>.

... }"""))

[[bacteria.unknown_bacterium]]

SPARQL allows you to perform searches involving several variables.

For example, we can look for all bacteria with a grouping whose type

is InCluster. This research requires two variables, noted here ?b (the

bacterium) and ?r (its grouping), and three triples. It can be done as

follows:

>>> list(graph.query_owlready("""

... SELECT ?b WHERE {

... ?b

... <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

... �<http://lesfleursdunormal.fr/static/_downloads/bacteria.↲
owl#Bacterium>.

...

... ?b

... �<http://lesfleursdunormal.fr/static/_downloads/bacteria.↲
owl#has_grouping>

... ?r .

...

... ?r

... <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

... �<http://lesfleursdunormal.fr/static/_downloads/bacteria.↲
owl#InCluster>.

... }"""))

[[bacteria.unknown_bacterium]]

Chapter 11 Working with RDF triples and worlds

274

Finally, the default_world.sparql_query() method is a shortcut for

directly performing a SPARQL search and retrieving the result in Owlready

format (as with query_owlready()):

>>> list(default_world.sparql_query("""..."""))

It is possible to easily integrate Owlready objects into a SPARQL query

using their IRI between angle brackets (<...>), for example:

>>> individual = onto.unknown_bacterium

>>> list(default_world.sparql_query("""

... SELECT ?class WHERE {

... <%s> a ?class .

... ?class a <http://www.w3.org/2002/07/owl#Class> .

... }""" % individual.iri))

[[bacteria.Bacterium]]

This SPARQL query searches for all the classes to which the individual

“unknown_bacterium” belongs. In this example, the property “a” is a

shortcut for “<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>”.

11.3.2  �SPARQL prefixes
Owlready and RDFlib also allow the use of SPARQL prefix in order to

simplify the writing of SPARQL queries and to shorten the IRIs. Prefixes are

declared with the bind() method, as follows:

graph.bind("prefix", "base IRI")

Then, the IRIs starting with the basic IRI can be written in the form

“prefix:end_of_the_IRI”, without the angle brackets. In the following

example, we define a prefix for OWL, and then we resume the previous

example using this prefix:

>>> graph = default_world.as_rdflib_graph()

>>> graph.bind("owl", "http://www.w3.org/2002/07/owl#")

Chapter 11 Working with RDF triples and worlds

275

>>> individual = onto.unknown_bacterium

>>> list(default_world.sparql_query("""

... SELECT ?class WHERE {

... <%s> a ?class .

... ?class a owl:Class .

... }""" % individual.iri))

[[bacteria.Bacterium]]

11.3.3  �Creating RDF triples with SPARQL
SPARQL queries of type “INSERT” allow the creation of RDF triples. They

are executed with the update() method of the RDFlib graph object. As

previously with RDFlib (see 11.2.2), it is necessary to indicate in which

ontology the triples will be created. This can be done in two different ways:

•	 Either in the manner of Owlready, with a “with

ontology: ...” block:

>>> with onto:

... graph.update("""

... INSERT {

... <http://www.test.org/t.owl#MyClass>

... �<http://www.w3.org/1999/02/22-rdf-syntax-↲
ns#type>

... <http://www.w3.org/2002/07/owl#Class> .

... } WHERE {}""")

•	 Or like RDFlib, using a contextual graph that we obtain

with the get_context() method:

>>> graph = default_world.as_rdflib_graph()

>>> graph2 = graph.get_context(onto)

>>> graph2.update("""

Chapter 11 Working with RDF triples and worlds

276

... INSERT {

... <http://www.test.org/t.owl#MyClass2>

... �<http://www.w3.org/1999/02/22-rdf-syntax-ns↲
#type>

... <http://www.w3.org/2002/07/owl#Class> .

... } WHERE {}""")

More complex queries can include a “WHERE” part. The following

example finds all the classes (“WHERE” part) and adds a comment to them

(“INSERT” part):

>>> graph2.update("""

... INSERT {

... ?class

... <http://www.w3.org/2000/01/rdf-schema#comment>

... "This entity is a class!."

... } WHERE {

... ?class a <http://www.w3.org/2002/07/owl#Class> .

... }

... """)

Please note adding RDF triples via SPARQL may not update the

corresponding objects in Owlready if they have already been loaded in

Python.

11.3.4  �Removing RDF triples with SPARQL
The update() method of the RDFlib graph object also allows executing

“DELETE” queries to delete RDF triples. These requests can take a “WHERE”

part. The following example deletes the comments added previously:

>>> graph2.update("""

... DELETE {

... ?class

Chapter 11 Working with RDF triples and worlds

277

... <http://www.w3.org/2000/01/rdf-schema#comment>

... "This entity is a class!."

... } WHERE {

... ?class a <http://www.w3.org/2002/07/owl#Class> .

... }

... """)

Please note removing RDF triples via SPARQL may not update the

corresponding objects in Owlready if they have already been loaded in

Python.

11.4  �Accessing RDF triples with Owlready
Owlready also has methods to directly access the RDF quadstore. These

methods are more complex and less standard than using RDFlib, but they

are also faster.

In order to reduce the volume of the quadstore, Owlready replaces

the IRIs of the entities with “abbreviated IRIs” called storid (store ID).

These are arbitrary codes in the form of strictly positive integers. The

_abbreviate() and _unabbreviate() methods allow translating an IRI to

a storid or a storid to an IRI, respectively. If an IRI has not yet received an

abbreviation, a new code is automatically created by _abbreviate() and

saved in the quadstore.

In the following example, the IRI of the Staphylococcus class

corresponds to the storid 324 (note: the exact value of the storid can vary

from one quadstore to another, depending on the order of creation of the

entities in the ontology):

>>> default_world._abbreviate(onto.Staphylococcus.iri)

323

>>> default_world._unabbreviate(323)

'http://lesfleursdunormal.fr/static/_downloads/bacteria.owl

#Staphylococcus'

Chapter 11 Working with RDF triples and worlds

278

The storid attribute of any entity allows you to retrieve its storid:

>>> onto.Staphylococcus.storid

323

The _get_by_storid() method allows the opposite operation, that is

to say, to obtain an entity from its storid:

>>> default_world._get_by_storid(323)

bacteria.Staphylococcus

Blank nodes are also represented in the quadstore by storid, but these

are strictly negative integers.

The Owlready quadstore stores relationships between two entities

using RDF triples of the classic form (subject, predicate, object). On the

other hand, the relations between an entity and a datatype value are stored

in the form of quadruplets (or quad), of the form (subject, predicate, value,

datatype). The value can be an integer (Python int type), a real number

(Python float type), or a character string (Python str type). The type

is either a character string which indicates the language for a localized

character string, prefixed by “@” (e.g., “@en” or “@fr”), or the storid of the

datatype (see supported IRIs by OWL in Table 4-1), or 0 if no datatype is

specified (corresponding to PlainLiteral in OWL).

The _get_triples_spod_spod(subject, predicate, object_or_

value, datatype) method behaves similarly to RDFlib’s triples()

method. We can obtain the triples present in the quadstore for the

Staphylococcus class, as follows:

>>> default_world._get_triples_spod_spod(323, None, None, None)

[(323, 6, 11, None),

 (323, 9, 321, None),

 (323, 33, -20, None)]

Since these are triples corresponding to relations between two entities,

the datatype (fourth value of each tuple) is not used and is equal to None.

Chapter 11 Working with RDF triples and worlds

279

The _get_obj_triples_spo_spo(subject, predicate, object) and

_get_data_triples_spod_spod(subject, predicate, value, type)

methods work like _get_triples_spod_spod(), but they are limited to

relations between two entities (for the former) and between an entity and a

datatype value (for the latter).

The _unabbreviate() method can then be used to decode the results

obtained previously:

>>> default_world._unabbreviate(6)

'http://www.w3.org/1999/02/22-rdf-syntax-ns#type'

>>> default_world._unabbreviate(11)

'http://www.w3.org/2002/07/owl#Class'

[...]

The default_world._to_rdf(entity_or_data) method makes it

possible to transform any entity or datatype value into RDF. It returns

either a couple (storid, None), when called on an entity, or a couple (value,

type), when called on a datatype value, as in the following examples:

>>> default_world._to_rdf(8)

(8, 43)

>>> default_world._to_rdf(onto.Staphylococcus)

(323, None)

Its counterpart, the default_world._to_python(object_or_value,

datatype) method, performs the opposite operation.

>>> default_world._to_python(8, 43)

8

>>> default_world._to_python(323, None)

bacteria.Staphylococcus

Chapter 11 Working with RDF triples and worlds

280

The _has_obj_triple_spo(subject, predicate, object) and _has_

data_triple_spod(subject, predicate, data, datatype) methods are

used to verify the existence of an RDF triple in the quadstore. For example,

we can verify the existence of the first triple of the Staphylococcus class as

follows:

>>> default_world._has_obj_triple_spo(323, 6, 11)

True

The _del_obj_triple_spo(subject, predicate, object) and _del_

data_triple_spod(subject, predicate, data, datatype) methods

allow deleting one or more RDF triples (several triples are deleted in the

case where a parameter is None, which acts as a joker). For example, we

can delete the first triples of the Staphylococcus class as follows:

>>> default_world._del_obj_triple_spo(323, 6, 11)

Be careful, however, these methods do not update the corresponding

Owlready objects: the Staphylococcus class is still a child of Coccus in

Python:

>>> onto.Staphylococcus.is_a

[bacteria.Coccus]

The _add_obj_triple_spo(subject, predicate, object) and _add_

data_triple_spod (subject, predicate, data, datatype) methods

add an RDF triple. They must be applied to an ontology (and not to

default_world) in order to specify the ontology in which the triple will be

inserted. For example, to recreate the previously deleted triple, we will do:

>>> onto._add_obj_triple_spo(323, 6, 11)

Again, these two methods do not update Owlready Python objects.

Chapter 11 Working with RDF triples and worlds

281

Finally, Owlready has many optimized methods for performing a

specific type of search in the quadstore. The names of these methods

follow the following pattern:

get<element>_triple<plural>_<inputs>_<output>()

where

•	 <element> indicates in which part of the quadstore the

search is made:

–– <element> = (empty): For searching in the entire

quadstore

–– <element> = obj: For searching in the relations between

two entities

–– <element> = data: For searching in the relations

between an entity and a datatype value

•	 <plural> indicates how many results are returned:

–– <plural> = s: Returns all results found in the quadstore

–– <plural> = (empty): Returns the first result found in the

quadstore

•	 <input> indicates the parameters of the method. It is a

combination of the following characters:

–– c: The ontology identifier

–– s: The subjects of the triple (a storid for an entity or a blank

node)

–– p: The predicate of the triple (a storid for a property)

–– o: The object of the triple (a storid for an entity or a blank

node or a datatype value)

Chapter 11 Working with RDF triples and worlds

282

–– d: The datatype (an empty string, a storid for a datatype, or a

two-letter language code prefixed by “@”)

•	 <output> indicates the return values of the method. It is

a combination of the same characters as for the entries.

The following optimized methods are available:

•	 _get_triples_s_p(), _get_triples_s_pod(),

_get_triples_sp_od(), _get_triples_spod_spod()

•	 _get_triple_sp_od()

•	 _get_obj_triples_sp_o(), _get_obj_triples_sp_

co(), _get_obj_triples_spo_spo(), _get_obj_

triples_cspo_cspo(), _get_obj_triples_s_po(),

_get_obj_triples_po_s()

•	 _get_obj_triple_po_s(), _get_obj_triple_sp_o()

•	 _get_data_triples_s_pod(), _get_data_triples_

sp_od(), _get_data_triples_spod_spod()

•	 _get_data_triple_sp_od()

For example, the _get_obj_triples_sp_o() method searches only

among the relations between two entities (“objs”); it takes as parameters

a subject and a predicate (“sp”) and returns a list of objects (“o”). We can

obtain the storids of the parent classes of the Staphylococcus class (storid

323) as follows (6 being the storid of the typical RDF property):

>>> list(default_world._get_obj_triples_sp_o(323, 6))

[11]

Chapter 11 Working with RDF triples and worlds

283

11.5  �Interrogating the SQLite3
database directly

The Owlready quadstore is implemented as a SQLite3 database. It contains

three main tables:

•	 resources, which maps IRIs to storids

•	 objs, which contains the quadruplets of the relations

between two entities

•	 datas, which contains the quadruplets of the relations

between an entity and a data

Finally, the “quads” view is a read-only pseudo-table that contains

both the records from the objs table and the datas table (for objs, d = NULL).

The following tables show the schema of these tables:

resources table

storid INTEGER iri TEXT

objs table

rowid INTEGER c INTEGER s INTEGER p INTEGER o INTEGER

datas table

rowid INTEGER c INTEGER s INTEGER p INTEGER o BLOB d INTEGER

quads view

rowid INTEGER c INTEGER s INTEGER p INTEGER o BLOB d INTEGER

Chapter 11 Working with RDF triples and worlds

284

The fields are

•	 storid: An identifier in the quadstore

•	 iri: The IRI associated with the storid

•	 rowid: A row identifier in the SQL table

•	 c: An ontology identifier—1 for the first ontology

loaded, 2 for the second, and so on

•	 s: The subject of the triple, that is, a storid

•	 p: The predicate of the triple, that is, a storid for a

property

•	 o: The object of the triple, that is, a storid (for the objs

table), a datatype value (integer, float, or string for the

datas table), or any of the two (for the quads view)

•	 d: The datatype for the value in o is either of the

following:

–– None (NULL in SQL) for an entity (in the quads view)

–– A storid indicating the type of data (for the datas or

quads table)

–– A two-letter language code of the form “@langue”, for

example, “@en” for English or “@fr” for French (for

localized texts in the datas and quads tables)

The execute() method allows you to execute an SQL query directly on

the database. As an example, the following SQL query makes it possible to

search for all of the bacteria having a grouping whose type is InCluster (a

query that we had already carried out in SPARQL in section 11.3.1):

>>> default_world.graph.execute("""

... SELECT q1.s

... FROM objs q1, objs q2, objs q3

Chapter 11 Working with RDF triples and worlds

285

... WHERE q1.p=%s AND q1.o=%s

... AND q2.s=q1.s AND q2.p=%s

... AND q3.s=q2.o AND q3.p=%s AND q3.o=%s

... """% (rdf_type, onto.Bacterium.storid,

... onto.has_grouping.storid,

... rdf_type, onto.InCluster.storid)

...).fetchall()

[(327,)]

>>> default_world.graph._unabbreviate(327)

'http://lesfleursdunormal.fr/static/_downloads/bacteria.owl#↲
unknown_bacterium'

This query uses the objs table three times (this corresponds to the

three triples of the SPARQL query).

To help write SQL queries, it is possible to draw inspiration from

queries produced by Owlready’s search() method. The sql_request()

method of the pseudo-list returned by search() displays the SQL query

and the corresponding parameters (whose values will replace the “?” of the

query). Here is an example:

>>> default_world.search(iri = "*Bacteri*").sql_request()

('SELECT DISTINCT q1_1.s FROM objs q1_1, resources↲
 WHERE resources.storid = q1_1.s AND resources.iri GLOB ?',↲
['*Bacteri*'])

11.6  �Adding support for custom datatypes
The declare_datatype() global function allows declaring additional

datatype in Owlready. The function takes four parameters: the datatype

Python class, its IRI, a parser function, and a serializer function. The

serializer function is in charge of the serialization of the datatype, that is

Chapter 11 Working with RDF triples and worlds

286

to say, to translate it into a string. The parser function is in charge of the

opposite operation: it reads the string and returns the Python datatype

value.

The following example adds support for the “hexBinary” datatype

(which is defined in XML-Schema). It first creates a Python class called

“Hex” for managing a hexadecimal value. Then, it defines the parser

function. This function reads a hexadecimal value (in the format of XML-

Schema) and returns a Hex instance. The serializer function takes a Hex

instance and returns a hexadecimal value formatted in a string (we remove

the first two characters, with “[2:]”, because Python adds “0x” at the

beginning of a hexadecimal value, while XML-Schema does not). Finally,

we declare the new datatype.

>>> class Hex(object):

... def __init__(self, value):

... self.value = value

>>> def parse_hex(s):

... return Hex(int(s, 16))

>>> def serialize_hex(x):

... h = hex(x.value)[2:]

... if len(h) % 2 != 0: return "%s" % h

... return h

>>> declare_datatype(Hex, "http://www.w3.org/2001/↲
XMLSchema#hexBinary", parse_hex, serialize_hex)

We can now create an ontology and use a Hex value in data properties:

>>> onto = get_ontology("http://www.test.org/test_hex.owl")

>>> with onto:

... class has_hex(Thing >> Hex): pass

Chapter 11 Working with RDF triples and worlds

287

... class MyClass(Thing): pass

... c = MyClass()

... c.has_hex.append(Hex(14))

We can verify the content of the quadstore:

>>> onto.graph.dump()

<http://www.test.org/t.owl>

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

 <http://www.w3.org/2002/07/owl#Ontology> .

[...]

<http://www.test.org/t.owl#myclass1>

 <http://www.test.org/t.owl#has_hex>

 0e^^<http://www.w3.org/2001/XMLSchema#hexBinary> .

Notice that the value is stored in the hexadecimal format in the

quadstore (here, “0e” is the hexadecimal representation of 14).

We may also load ontologies using the XML-Schema hexBinary

datatype. However, note that declare_datatype() must be called before

loading such ontologies.

11.7  �Creating several isolated worlds
Owlready makes it possible to create several isolated “worlds”, sometimes

called “universe of speech”. This makes it possible in particular to load

the same ontology several times, independently, that is to say, without

the modifications made on one copy affecting the other copy. It can also

be useful for simultaneously loading several incompatible versions of the

same ontology.

Chapter 11 Working with RDF triples and worlds

288

By default, Owlready creates only one world, called default_world.

The World class allows you to create a new world, independent from

default_world.

>>> from owlready2 import *

>>> my_world = World()

Each world is stored in a separate quadstore. Each can be stored in

RAM and/or on the disk in a different file via the set_backend() method

(see section 4.7). Generally speaking, all of the methods we applied to

default_world can be applied to worlds, such as search() or as_rdflib_

graph(). In addition, several global functions are actually shortcuts

to methods of default_world. When using several worlds, you must

therefore call the methods and not the global shortcuts. Here is the list of

these shortened functions and the corresponding methods:

Shortcut global function Corresponding method

get_ontology() World.get_ontology()

get_namespace() World.get_namespace()

IRIS[iri] World[iri]

sync_reasoner() sync_reasoner(world)

The following example illustrates the isolation of the worlds, creating

a new world separate from default_world, then loading the ontology of

bacteria in each world. In default_world, we delete the Staphylococcus

class, but it remains present in the other world.

>>> onto = get_ontology("http://lesfleursdunormal.fr/↲
static/_downloads/bacteria.owl#").load()

>>> onto2 = my_world.get_ontology("http://lesfleursdunormal.↲
fr/static/_downloads/bacteria.owl#").load()

Chapter 11 Working with RDF triples and worlds

289

>>> destroy_entity(onto.Staphylococcus)

>>> onto.Staphylococcus

None

>>> onto2.Staphylococcus

bacteria.Staphylococcus

Finally, the subclasses() and descendants() methods of the OWL

Thing and Nothing classes assume that they are called for default_world

(indeed, these classes are shared by all worlds). If it is not the case, it is

necessary to pass as a parameter the desired world, for example:

>>> list(Thing.descendants(world = my_world))

11.8  �Summary
In this chapter, you have learned how to access directly to RDF triples in

the Owlready quadstore and to perform SPARQL queries. We have also

seen how to create several isolated worlds, for instance, for loading several

copies of the same ontology.

Chapter 11 Working with RDF triples and worlds

291© Lamy Jean-Baptiste 2021
L. Jean-Baptiste, Ontologies with Python, https://doi.org/10.1007/978-1-4842-6552-9

�APPENDIX A

Description logics
Description logics (DL) are a family of logics used by ontologies to

formalize knowledge of a domain by describing the different concepts of

this domain and the associated semantics. Semantics is expressed using

predicates of the first-order logic. In order to keep a decidable system, only

a subset of the first-order logic is used. The subset is chosen according to

the needs of the field. This is why we speak of “description logics” in the

plural, because there are a large number of different logics, depending on

the subsets selected: with or without negation, with or without unions, and

so on.

The different description logics are named using letters representing

the elements of the first-order logic that they authorize. For example,

the AL logic allows the universal concept ⊤, the empty concept ⊥, the

negation of an atomic concept ¬A, the intersection A ⊓ B, the universal

restriction ∀R. C, and the existential restriction ∃R. ⊤, limited to the

universal concept ⊤. The ALU logic is an extension of the AL logic

which also allows the union A ⊔ B and so on.

Description logics correspond to fragments of the first-order predicate

logic with a single free variable. They are equipped with formal semantics,

based on logic. An ontology  can be defined as a set of logical axioms Φ.

These axioms are constructed from a set of individuals  = ¼{ }i j, , ,

from a set of concepts ℂ = {C, D, …}, a set of roles ℝ = {R, S, …}, and a

set of constructors  . These constructors make it possible to combine

concepts and/or roles (depending on the constructor) and to define new

concepts or roles. The types of axioms and the constructors depend on

https://doi.org/10.1007/978-1-4842-6552-9#DOI

292

the logic of description considered. The main types of axioms are C ⊑ D

(subsumption), C ≡ D (equivalence), C(i) (instantiation), and R(i, j)

(relation) and, for the description logic ALCI , S � �= Ø " ${ }-, , , , ,R .

Table A-1 lists the main types of axioms and the constructors.

Description logics have a formal semantics, which is defined in terms

of interpretations. For an ontology  , an interpretation  = ()D,f is a pair

comprising an interpretation domain Δ (which is a nonempty set) and

an interpretation function f () which, for each individual, concept, role,

compound expression (defined using constructors), and axiom, returns its

interpretation in the Δ domain, as follows:

	 f iÎ()Î D 	

	 f AÎ() Í D 	

	 f RÎ() Í ´ D D 	

Table A-1.  Syntax and semantics of an ontology in a description

logic. A and B are concepts, R is a role, i and j of individuals. The

disjointedness has been added to facilitate its understanding, but it

can be obtained by combining the intersection and the subsumption

Syntax Description Semantics

Constants ⊤ Thing/Top Δ

⊥ Nothing/Bottom ∅ (empty set)

Axioms A ⊑ B A is subsumed by B f (A) ⊆ f (B)

A ≡ B A is equivalent to B f (A) = f (B)

(continued)

Appendix A Description logics

293

Syntax Description Semantics

A(i) i is an instance of A f (i) ∈ f (A)

R(i, j) i and j related by R (f (i), f (j)) ∈ f (R)

Constructors ¬A Complement of A Δ ∖ f (A)

A ⊓ B Intersection of A and

B
f (A) ∩ f (B)

A ⊔ B Union of A and B f (A) ∪ f (B)

∃R. B Existential restriction {a ∈ Δ ∣ ∃ b,

(a, b) ∈ f (R) ∧ b ∈ f (B)}

∀R. B Universal restriction {a ∈ Δ ∣ ∀ b,

(a, b) ∈ f (R) → b ∈ f (B)}

R− Inverse role {(a, b) ∈ Δ × Δ ∣ (b, a) ∈ f (R)}

Disjointedness A ⊓ B ⊑ ⊥ A and B are disjoint f (A) ∩ f (B) = ∅

Table A-1.  (continued)

The last column of Table A-1 shows the interpretation associated

with each axiom and constructor. Using the interpretation function, the

logical axioms of an ontology can be transformed into set formulas, which

express the semantics of the ontology. For example, the axiom A ⊑ B ⊓ C is

translated to f (A ⊑ B ⊓ C) = f (A) ⊆ f (B) ∩ f (C).

An interpretation  satisfies an ontology  if it satisfies all the axioms

of  (i.e., " Î ()F F, f is true). An ontology  is consistent if there

exists at least one interpretation  which satisfies  ( is inconsistent

otherwise). A concept C is satisfiable in  if (and only if) there exists at

least one interpretation  which satisfies  such that f (C) ≠ ∅ (i.e., there

exists an individual i which belongs to C).

Appendix A Description logics

294

For an ontology  , F Î means that the axiom Φ belongs to the

set  (i.e., the axiom has been asserted in the ontology), and O �F

means that the axiom Φ can be inferred from the axioms in  . The simple

transitivity between the subsumption relations is generally not considered

as an inference from this point of view: for example, if  ={ }A B B C , ,

we consider that A C Î . In fact, indirect subsumption relationships

can be easily calculated, and a reasoner is not required for this task.

If you wish to explore the question from a theoretical point of view, you

can find more information on the description logics in the following book:

F. Baader, D. Calvanese, D.L. McGuinness,

D. Nardi, P.L. Patel-Schneider. The description
logic handbook: theory, implementation and
applications. Cambridge University Press, 2007

https://www.researchgate.net/

publication/230745455_The_Description_

Logic_Handbook_Theory_Implementation_and_

Applications

Appendix A Description logics

https://www.researchgate.net/publication/230745455_The_Description_Logic_Handbook_Theory_Implementation_and_Applications
https://www.researchgate.net/publication/230745455_The_Description_Logic_Handbook_Theory_Implementation_and_Applications
https://www.researchgate.net/publication/230745455_The_Description_Logic_Handbook_Theory_Implementation_and_Applications
https://www.researchgate.net/publication/230745455_The_Description_Logic_Handbook_Theory_Implementation_and_Applications

295© Lamy Jean-Baptiste 2021
L. Jean-Baptiste, Ontologies with Python, https://doi.org/10.1007/978-1-4842-6552-9

�APPENDIX B

Notations for
formal ontologies
The tables on the following pages give the correspondence between

different notations for the ontologies : Protégé, Owlready, the description

logics, as well as the corresponding semantics in set logic and first-order

logic. The following table, available for download from the Internet, can be

printed as a one-page memory aid:

www.lesfleursdunormal.fr/static/_downloads/great_ontology_

table.pdf

Protégé

Const. Top Thing

Bottom Nothing

Axioms Class subsumption A subclass of B

Property subsumption R subproperty of S

Equivalence A equivalent to B

Instantiation i type A

Relations i object property assertion j

i data property assertion j

(continued)

https://doi.org/10.1007/978-1-4842-6552-9#DOI
http://www.lesfleursdunormal.fr/static/_downloads/great_ontology_table.pdf
http://www.lesfleursdunormal.fr/static/_downloads/great_ontology_table.pdf

296

Protégé

Semantic

constructors

Complement (negation) not A

Intersection (and) A and B

Union (or) A or B

Extension {i, j,...}

Inverse inverse of R

Transitive closure -

Composition R o S

Existential restriction R some B

Universal restriction R only B

Cardinality R exactly 2 B

restrictions R max 2 B

R min 2 B

Value restriction R value j

Decomp. Disjoint A disjoint with B

Domain R domain A

Range R range B

Python + Owlready2

Const. Top Thing

Bottom Nothing

(continued)

Appendix B Notations for formal ontologies

297

Python + Owlready2

Axioms Subsumption class A(B): ... (assertion)

A.is_a.append(B) (assertion)

issubclass(A, B) (test)

Equivalence A.equivalent_to.append(B) (assertion)

B in A.equivalent_to (test)

Instantiation i = A() (assertion)

i.is_instance_of.append(A)

isinstance(i, A) (test)

Relations i.R = j (R is functional)

i.R.append(j) (otherwise)

Semantic

constructors

Complement

(negation)

Not(A)

Intersection (and) A & B (or) And([A, B,...])

Union (or) A | B (or) Or([A, B,...])

Extension OneOf([i, j,...])

Inverse Inverse(R) (constructor)

S.inverse = R (assertion)

Transitive closure -

Composition PropertyChain([R, S])

Existential restriction R.some(B)

Universal restriction R.only(B)

Cardinality R.exactly(2, B)

restrictions R.max(2, B)

R.min(2, B)

Value restriction R.value(j)

(continued)

Appendix B Notations for formal ontologies

298

Python + Owlready2

Decomposable Disjoint AllDisjoint([A, B])

Domain R.domain = [A]

Range R.range = [B]

Class property:

Existential restriction

A.R = B (R is functional)

A.R.append(B) (otherwise)

Universal restriction A.R = B (R is functional)

A.R.append(B) (otherwise)

A.R.append(C)

Value restriction A.R = j (R is functional)

A.R.append(j) (otherwise)

Description Logics (DL)

Const. Top ⊤

Bottom ⊥

Axioms Class subsumption A ⊑ B

Property subsumption R ⊑ S

Equivalence A ≡ B

Instantiation A(i )

Relations R(i, j)

(continued)

Appendix B Notations for formal ontologies

299

Description Logics (DL)

Semantic constructors Complement (negation) ¬A

Intersection (and) A ⊓ B

Union (or) A ⊔ B

Extension i, j, …

Inverse R−

Transitive closure R+

Composition R ∘ S

Existential restriction ∃R. B

Universal restriction ∀R. B

Cardinality =2R. B

restrictions ≤2R. B
≥2R. B

Value restriction ∃R. {j}

Decomposable Disjoint A ⊓ B ⊑ ⊥

Domain ∃R. ⊤ ⊑ A

Range ⊤ ⊑ ∀ R. B

Class property:

Existential restriction

A ⊑ ∃ R. B

Universal restriction A ⊑ ∀ R. (B ⊔ C ⊔ …)

Value restriction A ⊑ ∃ R. {j} ∧ (∃R−. A)(j)

Appendix B Notations for formal ontologies

300

First-order logic

Const. Top ⊤, such as ∀x, ⊤ (x) = true

Bottom ⊥, such as ∀x, ⊥ (x) = false

Axioms Class subsumption ∀x, A(x) → B(x)

Property subsumption ∀x ∀ y, R(x, y) → S(x, y)

Equivalence ∀x, A(x) ↔ B(x)

Instantiation A(i )

Relations R(i, j)

Semantic

constructors

Complement (negation) ¬A(x)

Intersection (and) A(x) ∧ B(x)

Union (or) A(x) ∨ B(x)

Extension x ∈ {i, j, …}

Inverse ∀i ∀ j, S(i, j) = R(j, i )

Transitive closure

Composition

Existential restriction ∃y, R(x, y) ∧ B(y)

Universal restriction ∀y, R(x, y) → B(y)

Cardinality |{y ∣ R(x, y) ∧ B(y)}| = 2

restrictions |{y ∣ R(x, y) ∧ B(y)}| ≤ 2

|{y ∣ R(x, y) ∧ B(y)}| ≥ 2

Value restriction R(x, j)

Decomp. Disjoint ∀x, ¬ (A(x) ∧ B(x))

Domain ∀x, (∃y, R(x, y)) → A(x)

Range ∀x ∀ y, R(x, y) → B(y)

Appendix B Notations for formal ontologies

301

Set notation

Const. Top Δ

Bottom ∅

Axioms Class subsumption f (A) ⊆ f (B)

Property subsumption f (R) ⊆ f (S)

Equivalence f (A) = f (B)

Instantiation f (i ) ∈ f (A)

Relations (f (i ), f (j)) ∈ f (R)

Semantic

constructors

Complement (negation) Δ ∖ f (A)

Intersection (and) f (A) ∩ f (B)

Union (or) f (A) ∪ f (B)

Extension {f (i ), f (j), …}

Inverse {(a, b) ∣ (b, a) ∈ f (R)}

Transitive closure ∪i ≥ 1(f (R))i

Composition {(a, c) ∈ Δ × Δ ∣ ∃ b, (a, b) ∈

f (R) ∧ (b, c) ∈ f (S)}

Existential restriction {a ∈ Δ ∣ ∃ b, (a, b) ∈ f (R) ∧ b ∈ f (B)}

Universal restriction {a ∈ Δ ∣ ∀ b, (a, b) ∈ f (R) → b ∈ f (B)}

Cardinality {a ∈ Δ ∣ |{b ∣ (a, b) ∈ f (R) ∧ b ∈ f (B)}| = 2}

restrictions {a ∈ Δ ∣ |{b ∣ (a, b) ∈ f (R) ∧ b ∈ f (B)}| ≤ 2}

{a ∈ Δ ∣ |{b ∣ (a, b) ∈ f (R) ∧ b ∈ f (B)}| ≥ 2}

Value restriction {a ∈ Δ ∣ (a, f (j)) ∈ f (R)}

Decomp. Disjoint f (A) ∩ f (B) = ∅

Domain f (R) ⊆ {(a, b) ∣ a ∈ f (A)}

Range f (R) ⊆ {(a, b) ∣ b ∈ f (B)}

Appendix B Notations for formal ontologies

303© Lamy Jean-Baptiste 2021
L. Jean-Baptiste, Ontologies with Python, https://doi.org/10.1007/978-1-4842-6552-9

�APPENDIX C

Reference manual

C.1  �World class
Attributes

•	 filename: The name of the file where the quadstore is

saved or :memory: if it is stored in RAM. Read-only (use

the set_backend() method to set the filename).

•	 full_text_search_properties: The list of properties

for which full-text search is enabled. The list can be

modified to add or remove properties.

•	 graph: The associated RDF graph object (not an RDFlib

graph). Read-only.

•	 ontologies: A dictionary matching IRIs to ontologies

currently loaded. Read-only.

Operators and special syntax

•	 world[“<IRI>”]: Returns an entity from its IRI (or None if

there is no entity with the requested IRI).

https://doi.org/10.1007/978-1-4842-6552-9#DOI

304

Methods

•	 search(_use_str_as_loc_str = True, _case_

sensitive = True, iri, ...): Searches for entities

and returns a (lazy) list with the entities found.

_use_str_as_loc_str: If this parameter is True,

Python strings to search for can be matched to

localized strings (locstr).

_case_sensitive: If this parameter is True, the

case is taken into account when matching character

strings (that is to say that the lowercase and

uppercase letters are considered as different).

iri (optional): The IRI of the concept sought, in

the form of a character string which may contain

wildcards (“*” character).

type = Class (optional): Searches for individuals of

the class Class. A list of classes can also be passed as

a parameter.

subclass_of = Class (optional): Searches for

subclasses of the class Class. A list of classes can also

be passed as a parameter.

is_a = Class (optional): Matches both the type and

subclass_of parameters (either one) and allows

you to find both subclasses and individuals.

<property> = value (optional): Searches for entities

with the given value for the given property. The

special value can be used as a wildcard to indicate

the presence of a relation, whatever the value. The

Appendix C Reference manual

305

value None can be used to indicate that there is no

relationship. A list of values can also be passed as a

parameter.

•	 search_one(_use_str_as_loc_str = True, _case_

sensitive = True, iri, ...): Searches for an entity.

If several entities match the search criteria, only one

is returned (according to an arbitrary choice). The

parameters are the same as for the search() method

earlier.

•	 get_ontology(base_iri): Creates a new ontology from

its IRI (or returns the already existing ontology, if there

is one).

base_iri: The IRI of the ontology.

•	 get_namespace(base_iri): Creates a namespace

(see 4.8).

base_iri: The IRI of the namespace created.

•	 set_backend(filename = "/name/of/the/quadstore/

file.sqlite3"): Saves the quadstore to the specified

file.

filename: The filename of the quadstore.

•	 save(file = None, format = "rdfxml"): Saves the

quadstore. Without parameters, the quadstore is saved

in its file (corresponds to the filename attribute) in

SQLite3 format. The file and format parameters are

used to export the quadstore in an OWL file.

file: The filename for saving the quadstore or a

Python file object.

format: The file format.

Appendix C Reference manual

306

•	 close(): Closes the quadstore.

•	 get(iri, default = None): Returns an entity from its

IRI (or default if there is no such entity).

iri: The desired IRI.

default: The value returned if the entity does not

exist.

•	 get_if_loaded(iri, default = None): Returns an

entity from its IRI, only if the entity is already loaded

in memory and available in cache. Otherwise, returns

default.

iri: The desired IRI.

default: The value returned if the entity does not exist.

•	 new_blank_node(): Creates a new blank node.

•	 as_rdflib_graph(): Returns a graph object,

compatible with RDFlib.

•	 sparql_query(): Performs a SPARQL query (see 11.3).

•	 classes(): Returns a generator for iterating all classes.

•	 inconsistent_classes(): Returns a generator

for iterating all inconsistent classes (that is to say,

equivalent to Nothing).

•	 individuals(): Returns a generator for iterating over

all individuals.

•	 properties(): Returns a generator for iterating over all

properties.

•	 data_properties(): Returns a generator for iterating

over all data properties.

Appendix C Reference manual

307

•	 object_properties(): Returns a generator for iterating

over all object properties.

•	 annotation_properties(): Returns a generator for

iterating over all annotation properties.

•	 disjoints(): Returns a generator for iterating over all

disjoints (of classes and properties) and all distinctions

(of individuals).

•	 disjoints_classes(): Returns a generator for iterating

over all disjoints of classes (AllDisjoint).

•	 disjoints_properties(): Returns a generator for

iterating over all disjoints of properties (AllDisjoint).

•	 different_individuals(): Returns a generator

for iterating over all distinctions of individuals

(AllDifferent).

•	 rules(): Returns a generator for iterating over all SWRL

rules.

•	 variables(): Returns a generator for iterating over all

SWRL variables.

•	 general_axioms(): Returns a generator for iterating

over all general axioms.

C.2  �Ontology class
Attributes

•	 base_iri: The IRI of the ontology (including the

trailing character, “#” or “/”). Read-only.

•	 name: The name of the ontology (i.e., the last part of the

base IRI).

Appendix C Reference manual

308

•	 imported_ontologies: The list of imported ontologies.

Can be modified, for adding or removing imports.

•	 loaded: True if the ontology has been loaded (with

load()) and False otherwise. Read-only.

•	 graph: The associated RDF graph object (not an RDFlib

graph). Read-only.

•	 metadata: The ontology metadata. Allows accessing or

modifying the ontology’s annotations (see 8.6).

•	 python_module: The name of the Python module that is

loaded with the ontology (optional).

•	 storid: The ontology identifier in the Owlready

quadstore.

•	 world: The world in which the ontology is defined (by

default, it is default_world). Read-only.

Operators and special syntax

•	 ontology.<entity name>: Returns an entity of the

ontology, whose IRI is the concatenation of the base IRI

of the ontology and the entity name. Returns None if the

entity does not exist.

•	 ontology[“<entity name>: (idem)”].

Methods

•	 load(only_local = False, fileobj = None, reload

= False, reload_if_newer = False): Loads the

ontology from the file object passed as an argument,

from a local cache directory (in onto_path), or from its

IRI (in decreasing order of priority).

Appendix C Reference manual

309

only_local: If this parameter is True, the ontology

will not be downloaded from the Internet.

fileobj: A Python file object from which the

ontology is loaded (optional, can be used to force

the load from a given file).

reload: If this parameter is True, the ontology

will be reloaded, even if it has already been loaded

before.

reload_if_newer: If this parameter is True, the

ontology will be reloaded, even if it has already been

loaded before, but only if the local copy is newer

than the one present in the quadstore.

•	 save(file = None, format = "rdfxml"): Saves the

ontology in a file. Parameters are:

file: The file where to save the ontology; it can be a

filename or a Python file object.

format: The file format (supported file format for

writing: “rdfxml” and “N-Triples”).

•	 destroy(): Destroys the ontology from the quadstore.

•	 get_namespace(base_iri): Creates a namespace in

this ontology (see 4.8).

base_iri: The IRI of the namespace.

•	 search(_use_str_as_loc_str = True, iri, ...):

Searches for some entities defined in this ontology and

returns a (lazy) list with the entities. The parameters are

the same as for the search() method of the World class.

Appendix C Reference manual

310

•	 search_one(_use_str_as_loc_str = True, iri,

...): Searches for some entities defined in this

ontology and returns a (lazy) list with the entities. If

several entities match the search criteria, only one

is returned (according to an arbitrary choice). The

parameters are the same as for the search_one()

method of the World class.

•	 classes(): Returns a generator to iterate over all the

classes defined in the ontology.

•	 inconsistent_classes(): Returns a generator to

iterate over inconsistent classes defined in the ontology

(i.e., classes equivalent to Nothing).

•	 individuals(): Returns a generator to iterate over all

the individuals defined in the ontology.

•	 properties(): Returns a generator to iterate over all

the properties defined in the ontology.

•	 data_properties(): Returns a generator to iterate over

all the data properties defined in the ontology.

•	 object_properties(): Returns a generator to iterate

over all the object properties defined in the ontology.

•	 annotation_properties(): Returns a generator to

iterate over all the annotation properties defined in the

ontology.

•	 disjoints(): Returns a generator for iterating over all

disjoints (of classes and properties) and all distinctions

(of individuals) defined in the ontology.

Appendix C Reference manual

311

•	 disjoints_classes(): Returns a generator for iterating

over all disjoints of classes (AllDisjoint) defined in

the ontology.

•	 disjoints_properties(): Returns a generator for

iterating over all disjoints of properties (AllDisjoint)

defined in the ontology.

•	 different_individuals(): Returns a generator

for iterating over all distinctions of individuals

(AllDifferent) defined in the ontology.

•	 rules(): Returns a generator for iterating over all SWRL

rules defined in the ontology.

•	 variables(): Returns a generator for iterating over all

SWRL variables defined in the ontology.

•	 general_axioms(): Returns a generator for iterating

over all general axioms defined in the ontology.

C.3  �Classes (ThingClass class)
Attributes

•	 name: The name or identifier of the class (i.e., the last

part of the IRI, after the trailing character “#” or “/”).

•	 iri: The IRI of the class.

•	 namespace: The namespace in which the class is

located; it can be an ontology (if the IRI of the class

is the concatenation of the IRI of the ontology with

the class name) or an object of the class Namespace

otherwise. Read-only.

Appendix C Reference manual

312

•	 is_a: The list of parent classes, including constructors.

This list can be modified.

•	 equivalent_to: The list of equivalent classes, including

constructors. This list can be modified.

•	 storid: The identifier of the class in the Owlready

quadstore.

•	 defined_class: Boolean annotation indicating if the

class is defined. The default value is False; if the value

is set to True, Owlready generates a class definition

when class properties are used (see 6.4).

Operators and special syntax

•	 class.<annotation_property_name>: Returns the list

of annotation values for the class (e.g., Class.label,

Class.comment, etc.).

•	 class.INDIRECT_<annotation_property_name>:

Returns the list of annotation values for the class,

including indirect values (due to annotation property

inheritance).

•	 class.<data_or_object_property_name>: Returns the

value or values of the existential and value restrictions

on the class for this property. Returns a single value if

the property is functional or returns a list otherwise.

•	 class.INDIRECT_<data_or_object_property_name>:

Returns all the values of the existential and value

restrictions on the class for this property, including

indirect relations due to class inheritance, property

inheritance, or transitive, symmetric, or reflexive

properties.

Appendix C Reference manual

313

Methods

•	 ancestors(include_self = True, include_

constructs = False): Returns the set of ancestor

classes of the class (mother classes, grandmothers,

etc.). The parameters are:

include_self: If this parameter is True, the class

itself is included in the returned set.

include_constructs: If this parameter is True,

constructors are included in the returned set.

•	 subclasses(only_loaded = False, world = None):

Returns a generator for iterating over the direct child

classes of the given class. Parameters are:

only_loaded: If this parameter is True, only classes

already loaded in Python are considered.

world: This parameter is used to indicate the world

in which to look for the child classes; it is only used

for the Thing and Nothing classes, when using a

world other than default_world.

•	 descendants(include_self = True, only_loaded

= False, world = None): Returns the set of classes

descending from the class (child classes, children of a

child class, etc.). Parameters are:

include_self: If this parameter is True, the class

itself is included in the returned set.

only_loaded: If this parameter is True, only classes

already loaded in Python are considered.

Appendix C Reference manual

314

world: This parameter is used to indicate the world

in which to look for the descendant classes; it is only

used for the Thing and Nothing classes, when using

a world other than default_world.

•	 instances(world = None): Returns the list of instances

(or individuals) belonging to the class (or one of its

descendant classes). The parameter is:

world: This parameter is used to indicate the world

in which to look for instances; it is only used for

the Thing and Nothing classes, when using a world

other than default_world.

•	 direct_instances(world = None): Returns the list

of instances (or individuals) directly belonging to the

class, excluding those belonging to a descendant class.

The parameter is:

world: This parameter is used to indicate the world

in which to look for instances; it is only used for

the Thing and Nothing classes, when using a world

other than default_world.

•	 get_class_properties(): Returns the set of properties

for which the class has at least one relation (via a

restriction). The value of these restrictions can then

be obtained either with the dotted notation “Class.

property_name” or with the alternative syntax

“property[Class]”.

•	 INDIRECT_get_class_properties(): Returns the set of

properties for which the class has at least one direct or

indirect relationship (via a restriction and taking into

account class inheritance, property inheritance, and

Appendix C Reference manual

315

transitive, symmetric, and reflexive properties). The

value of these restrictions can then be obtained with

the dotted notation “Class.INDIRECT_property_name”.

•	 constructs(): Returns a generator to iterate over the

constructors that refer to the class.

•	 inverse_restrictions(Prop = None): Returns a

generator to iterate over the restrictions that reference

the class. The parameter is:

Prop: If this parameter is not None, the results are

tailored to the restrictions on the property Prop.

•	 disjoints(): Returns a generator to iterate over

disjoints that include the class.

C.4  �Individuals (Thing class)
Attributes

•	 name: The name or identifier of the individual (i.e., the

last part of the IRI, after the trailing character “#”

or “/”).

•	 iri: The IRI of the individual.

•	 namespace: The namespace in which the individual

is located; it can be an ontology (if the IRI of the

individual is the concatenation of the IRI of the

ontology with the individual name) or an object of the

class Namespace otherwise. Read-only.

•	 is_a: The list of the classes the individual belongs to,

including constructors. This list can be modified.

Appendix C Reference manual

316

•	 equivalent_to: The list of identical (i.e., equivalent)

individuals (corresponds to the same as OWL relation).

This list can be modified.

•	 storid: The identifier of the individual in the Owlready

quadstore.

Operators and special syntax

•	 individual.<property_name>: Returns the individual’s

value(s) for this property. Returns a single value if the

property is functional or a list otherwise. The returned

values take into account the inverse properties.

•	 individual.INDIRECT_<property_name>: Returns all

the values of the individual for this property, including

the indirectly deducible relations (due to the class

inheritance, property inheritance, and transitive,

symmetric, and reflexive properties).

Methods

•	 differents(): Returns a generator to iterate over the

distinction (i.e., disjoints) that includes the individual

(corresponds to different from OWL relations).

•	 get_properties(): Returns the set of properties for

which the individual has at least one relation. The value

of these relations can then be obtained either with the

dotted notation “individual.property_name” or with

the alternative syntax “property[individual]”.

•	 INDIRECT_get_properties(): Returns the set of

properties for which the individual has at least one

direct or indirect relation (due to the class inheritance,

property inheritance, and transitive, symmetric, and

Appendix C Reference manual

317

reflexive properties). The value of these relations can

then be obtained with the dotted notation “individual.

INDIRECT_property_name”.

•	 get_inverse_properties(): Returns a generator to

iterate over the properties for which the individual

has at least one inverse relation (i.e., of which it is

the object). The generator yields couples of the form

(other_individual, Property), such that the relation

“other_individual Property individual” exists.

•	 generate_default_name(): Returns a name for the

individual. This method is called at the creation of an

individual. The default implementation returns the

class name in lowercase, followed by a number (1, then

2, 3, etc.). This method can be reimplemented.

C.5  ��Properties (PropertyClass class
and its descendants)

Attributes

•	 name: The name or identifier of the property (i.e., the

last part of the IRI, after the trailing character “#”

or “/”).

•	 iri: The IRI of the property.

•	 namespace: The namespace in which the property is

located; it can be an ontology (if the IRI of the property

is the concatenation of the IRI of the ontology with the

property name) or an object of the class Namespace

otherwise. Read-only.

Appendix C Reference manual

318

•	 is_a: The list of parent properties, including

constructors. This list can be modified.

•	 equivalent_to: The list of equivalent properties,

including constructors. This list can be modified.

•	 storid: The identifier of the property in the Owlready

quadstore.

•	 python_name: The name used in Python to access the

property via the dotted notation “individual.property_

name”. It defaults to the name attribute, but can be

modified.

•	 inverse: The inverse property of this property (or None

if none has been declared).

•	 domain: The list of domains of the property. This list can

be modified.

•	 range: The list of ranges of the property. This list can be

modified.

•	 range_iri: The list of ranges of the property in the

form of IRIs. Useful in particular for data properties to

be able to distinguish between the different types of

integer, float, and so on, datatypes recognized by OWL

but not distinguished by Python and Owlready.

•	 property_chain: The property chains to which this

property is equivalent.

•	 class_property_type: Indicating the type of

restrictions created when this property is used as class

properties. This attribute is a list; the allowed values

are ["some"], ["only"], ["some", "only"], and

["relation"] (see 6.3).

Appendix C Reference manual

319

Operators and special syntax

•	 property.<annotation_property_name>: Returns the

list of annotation values for the property.

•	 property.INDIRECT_<annotation_property_name>:

Returns the list of annotation values for the property,

including indirect values (due to annotation property

inheritance).

•	 property[<entity>]: Returns the list of property values

for the given entity. Always returns a list, even if the

property is functional.

•	 annotation_property[<entity>, <property>, <value>]:

Returns the list of annotation values for the given

relation, expressed as an (entity, property, value) triple.

Methods

•	 ancestors(include_self = True): Returns the set of

ancestor properties of the property (parent properties,

grandparents, etc.). The parameter is:

include_self: If this parameter is True, the

property itself is included in the returned set.

•	 subclasses(only_loaded = False, world = None):

Returns a generator for iterating over the child

properties of the property. Parameters are:

only_loaded: If this parameter is True, only

properties already loaded in Python are considered.

world: This parameter is used to indicate the world

in which to look for subproperties; it is used only for

the following properties: Property, ObjectProperty,

DataProperty, and AnnotationProperty, when

using a world other than default_world.

Appendix C Reference manual

320

•	 descendants(include_self = True, only_loaded =

False, world = None): Returns the set of properties

descending from the property (child properties,

children of child properties, etc.). Parameters are:

include_self: If this parameter is True, the

property itself is included in the returned set.

only_loaded: If this parameter is True, only

properties already loaded in Python are considered.

world: This parameter is used to indicate the

world in which to look for descendant properties;

it is used only for the following properties:

Property, ObjectProperty, DataProperty, and

AnnotationProperty, when using a world other

than default_world.

•	 disjoints(): Returns a generator to iterate over

disjoints that include the property.

•	 some(Class): Creates an existential restriction on the

property. The parameter is:

Class: The class to which the restriction relates or

None for an untyped existential restriction.

•	 only(Class): Creates a universal restriction on the

property. The parameter is:

Class: The class to which the restriction relates.

•	 value(value): Creates a value restriction on the

property. The parameter is:

Appendix C Reference manual

321

value: The value to which the restriction relates,

which can be an individual or a datatype value.

•	 exactly(nb, value = None): Creates an exact

cardinality restriction on the property. Parameters are:

nb: The cardinality.

value: The value to which the restriction relates or

None for an untyped restriction.

•	 min(nb, value = None): Creates a minimum

cardinality restriction on the property. Parameters are:

nb: The cardinality.

value: The value to which the restriction relates or

None for an untyped restriction.

•	 max(nb, value = None): Creates a maximum

cardinality restriction on the property. Parameters are:

nb: The cardinality.

value: The value to which the restriction relates or

None for an untyped restriction.

•	 has_self(value = True): Creates a “has self”

restriction on the property. The parameter is:

value: True if the relationship with oneself is

present (default value) or False otherwise.

Appendix C Reference manual

322

C.6  �Constructs (Contruct class and its
descendants)

Methods

•	 subclasses(only_loaded = False): Returns the list of

the constructor’s child classes (the list also includes the

classes declared as equivalent to the constructor). The

parameter is:

only_loaded: If this parameter is True, only

constructors already loaded in Python are

considered.

•	 destroy(): Destroys the constructor (usually

automatically called by Owlready).

C.6.1  �Restriction class
Attributes

•	 property: The property to which the restriction relates.

•	 type: The type of the restriction (a value among the

following constants: SOME, ONLY, VALUE, MAX, MIN,

EXACTLY, and HAS_SELF).

•	 value: The value to which the restriction relates (a class

for restrictions of the type SOME, ONLY, MAX, MIN, and

EXACTLY or an individual or a datatype value for VALUE

restrictions, a Boolean for HAS_SELF restrictions).

•	 cardinality: The cardinality of the restriction (only

available for MAX, MIN, and EXACTLY restrictions).

Appendix C Reference manual

323

C.6.2  �Intersection (And class)
Attributes

•	 Classes: The list of classes to which the intersection

relates.

C.6.3  �Union (Or class)
Attributes

•	 Classes: The list of classes to which the union relates.

C.6.4  �Complement (Not class)
Attributes

•	 Class: The class to which the complement relates.

C.6.5  �Property inverse (Inverse class)
Attributes

•	 property: The property that is inverted.

C.6.6  �Individual set (OneOf class)
Attributes

•	 instances: The list of individuals involved.

Appendix C Reference manual

324

C.7  �SWRL rules
C.7.1  �Variable class
Attributes

•	 name: The name of the variable (without the initial “?”).

•	 iri: The IRI of the variable of the form

“urn:swrl#<variable_name>”.

C.7.2  �Rules (Imp class)
Attributes

•	 body: The list of the rule conditions (implicitly linked by

logical “and”). Corresponds to the “if” part of the rule.

•	 head: The list of the rule consequences. Corresponds to

the “then” part of the rule.

Operators and special syntax

•	 str(rule): Translates the rule into a rule language

similar to that of Protégé, in a character string (e.g.,

“Woman(?X) -> Person(?X)”).

Methods

•	 set_as_rule(rule, namespaces = None): Defines

the rule from a string in a rule language similar to

that of Protégé. If the rule already had conditions or

consequences, these are destroyed and replaced by the

new rule. Parameters are:

rule: The rule, expressed as a string.

Appendix C Reference manual

325

namespaces: A list of namespaces (ontology or

Namespace) in which entities (class, properties, etc.)

are searched. By default, the ontology in which the

rule is defined is used.

•	 get_variable(name, create = True): Returns a

variable defined in the rule ontology from its name.

Parameters are:

name: The name of the variable (starting by “?”).

create: If this parameter is True, and the requested

variable does not exist yet, a new variable is created

and returned.

C.7.3  �Class assertion atom
(ClassAtom class)

Attributes

•	 class_predicate: The OWL class.

•	 arguments: The list of arguments, comprising a single

element—the variable or the individual belonging to

the class.

Syntax in SWRL rule language

•	 ClassName(?variable)

•	 http://server.org/full/iri/ontology.owl#

ClassName(?variable)

Appendix C Reference manual

http://server.org/full/iri/ontology.owl#ClassName(?variable)
http://server.org/full/iri/ontology.owl#ClassName(?variable)

326

C.7.4  �Datatype assertion atom
(DataRangeAtom class)

Attributes

•	 data_range: The datatype (e.g., int or float).

•	 arguments: The list of arguments, comprising a single

element—the variable belonging to the given datatype.

Syntax in SWRL rule language

•	 Datatype(?variable), for example: int(?x)

C.7.5  �Object property value atom
(IndividualPropertyAtom class)

Attributes

•	 property_predicate: The OWL object property.

•	 arguments: The argument list, consisting of two

elements—the variable or individual and the property

value for that variable/individual.

Syntax in SWRL rule language

•	 PropertyName(?variable, individual)

•	 PropertyName(individual, ?variable)

•	 PropertyName(?variable1, ?variable2)

•	 http://server.org/full/iri/ontology.owl#Property

Name(?variable, individual)

Appendix C Reference manual

http://server.org/full/iri/ontology.owl#PropertyName
http://server.org/full/iri/ontology.owl#PropertyName

327

•	 http://server.org/full/iri/ontology.

owl#PropertyName(individual, ?variable)

•	 http://server.org/full/iri/ontology.owl#Propert

yName(?variable1, ?variable2)

C.7.6  �Data property value atom
(DatavaluedPropertyAtom class)

Attributes

•	 property_predicate: The OWL data property.

•	 arguments: The argument list, consisting of two

elements—the variable or individual and the property

value for that variable/individual.

Syntax in SWRL rule language

•	 PropertyName(?variable, value), examples of values are

1, 1.5, character string

•	 PropertyName(?variable1, ?variable2)

•	 http://server.org/full/iri/ontology.owl#Propert

yName(?variable, value)

•	 http://server.org/full/iri/ontology.owl#Propert

yName(?variable1, ?variable2)

C.7.7  �Same individual atom
(SameIndividualAtom class)

Attributes

•	 arguments: The list of arguments, comprising two

elements, which can be variables or individuals.

Appendix C Reference manual

http://server.org/full/iri/ontology.owl#PropertyName
http://server.org/full/iri/ontology.owl#PropertyName
http://server.org/full/iri/ontology.owl#PropertyName
http://server.org/full/iri/ontology.owl#PropertyName
http://server.org/full/iri/ontology.owl#PropertyName
http://server.org/full/iri/ontology.owl#PropertyName
http://server.org/full/iri/ontology.owl#PropertyName
http://server.org/full/iri/ontology.owl#PropertyName

328

Syntax in SWRL rule language

•	 SameAs(?variable1, ?variable2)

C.7.8  �Distinct individual atom
(DifferentIndividualAtom class)

Attributes

•	 arguments: The list of arguments, comprising two

elements, which can be variables or individuals.

Syntax in SWRL rule language

•	 DifferentFrom(?variable1, ?variable2)

C.7.9  �Built-in function atom
(BuiltinAtom class)

Attributes

•	 builtin: The predefined function in the form of a

character string, for example, “add” or “multiply”.

•	 arguments: The list of arguments; the number of

arguments depends on the chosen builtin function.

Syntax in SWRL rule language

•	 builtin(?argument1, ?argument2,...)

Appendix C Reference manual

329

C.8  �PyMedTermino2
C.8.1  �Terminology class
Attributes

•	 name: The name of the terminology.

•	 iri: The full IRI of the terminology in PyMedTermino2.

•	 children: The list of the root concept in the hierarchy

of the terminology.

Operators and special syntax

•	 terminology[<code>]: Returns the concept

corresponding to the code passed as index or None if

there is no corresponding concept in the terminology.

Methods

•	 descendant_concepts(include_self = True, no_

double = True): Returns the list of all the concepts

in the terminology. The returned list is a “special list”

which combines the advantages of a Python list with

those of a generator: if this list is used in a loop, the

concepts will be loaded as the iterations go.

Parameters are:

include_self: If this parameter is True, the

terminology itself is included in the returned list.

no_double: If this parameter is True, duplicates

are eliminated (NB: this only has an impact for

multiaxial terminologies, that is to say, using

multiple inheritance, such as SNOMED CT but not

CIM10).

Appendix C Reference manual

330

•	 search(keywords): Performs a full-text search in

the labels and synonyms of the terminology. The

parameter is:

keywords: The keyword(s). Several keywords can be

separated by spaces, and the character “*” can be

used as a wildcard at the end of the word.

•	 has_concept(code): Returns True if the given code

corresponds to a concept in the terminology. The

parameter is:

code: The code to search for.

C.8.2  �Concept in a terminology
Attributes

•	 name: The code of the concept.

•	 iri: The full IRI of the concept in PyMedTermino2.

•	 terminology: The terminology containing the concept.

•	 parents: The list of the parent concepts (NB: for

monoaxial terminologies such as ICD10, the list has at

most one element).

•	 children: The list of the child concepts.

Operators and special syntax

•	 concept >> terminology: Maps the concept to

another terminology and returns a set of concepts

belonging to this other terminology. The returned set

can contain zero, one, or more concepts.

Appendix C Reference manual

331

Methods

•	 ancestor_concepts(include_self = True, no_

double = True): Returns the list of the ancestor

concepts of a concept (i.e., parent, grandparents, etc.).

The returned list is a “special list” which combines the

advantages of a Python list with those of a generator: if

this list is used in a loop, the concepts will be loaded as

the iterations go. Parameters are:

include_self: If this parameter is True, the concept

itself is included in the returned list.

no_double: If this parameter is True, duplicates

are eliminated (NB: this only has an impact for

multiaxial terminologies, that is to say, using

multiple inheritance, such as SNOMED CT, but not

ICD10).

•	 descendant_concepts(include_self = True, no_

double = True): Returns the list of descendant concepts

in the terminology (i.e., children, grandchildren, etc.).

The returned list is a “special list” which combines the

advantages of a Python list with those of a generator: if

this list is used in a loop, the concepts will be loaded as

the iterations go. Parameters are:

include_self: If this parameter is True, the concept

itself is included in the returned list.

no_double: If this parameter is True, duplicates

are eliminated (NB: this only has an impact for

multiaxial terminologies, that is to say, using

multiple inheritance, such as SNOMED CT, but not

ICD10).

Appendix C Reference manual

332

C.8.3  �Set of concepts (Concepts class)
Operators and special syntax

•	 concepts & concepts: Performs the (standard, i.e.,

nonsemantic) intersection of two sets.

•	 concepts | concepts: Performs the (standard) union

of two sets.

•	 concepts - concepts: Performs the (standard)

difference of two sets.

•	 concepts >> terminology: Maps the set of concepts

to another terminology and returns a set of concepts

belonging to this other terminology. The returned set

can contain zero, one, or more concepts.

Methods

•	 add(), clear(), discard(), isdisjoint(),

issubset(), issuperset(), intersection(), union(),

difference(), symmetric_difference(), remove(),

update(), copy(): These methods are inherited from

Python’s set class and behave identically to standard

Python sets.

•	 find(parent_concept): Returns the first concept

of the set which is the sought concept or one of its

descendants. The parameter is:

parent_concept: The concept to find in the set.

•	 extract(parent_concept): Returns the subset of

concepts in the set that descend from the given concept

(including the given concept itself). This method is

Appendix C Reference manual

333

similar to find(), but it returns all the concepts in

the set matching the criterion, not only the first one

encountered. The parameter is:

parent_concept: The concept to find from the set.

•	 subtract(parent_concept): Returns a new set,

containing all the concepts of the initial set, except

those which descend from the concept passed as a

parameter (including the concept itself). This method

is similar to extract(), but it returns all the concepts in

the set that do not match the criteria, not the ones that

do. The parameter is:

parent_concept: The concept to subtract from

the set.

•	 subtract_update(parent_concept): Removes from

the set all the concepts which descend from the

concept passed as a parameter (including the concept

itself). This method is similar to subtract(), but it

modifies the set in place instead of returning a new set.

The parameter is:

parent_concept: The concept to subtract from

the set.

•	 imply(other): Returns True if the set of concepts

implies the other set passed as a parameter, that is, if all

the concepts of the other set are descendants of at least

one concept of the set. The parameter is:

other: The other set for the comparison.

Appendix C Reference manual

334

•	 is_semantic_subset(other): Returns True if the

set is a semantic subset of the other set passed as a

parameter, that is, if all the concepts of the set are

descendants from at least one concept of the other set.

The parameter is:

other: The other set for the comparison.

•	 is_semantic_superset(other): Returns True if the

set is a semantic superset of the other set passed as a

parameter, that is, if all the concepts of the set are the

ancestor of at least one concept of the other set. The

parameter is:

other: The other set for the comparison.

•	 is_semantic_disjoint(other): Returns True if the

set is semantically disjoint from the other set passed as

a parameter, that is, if no concept of one of the sets is

a descendant of a concept of the other set. Be careful,

this method does not take into account the common

descendants that the concepts may have: for example,

the sets {cardiac disease} and {infection} will be

considered as semantically disjoint even though there

are infectious heart diseases. The parameter is:

other: The other set for the comparison.

•	 semantic_intersection(other): Returns the semantic

intersection of two sets of concepts. This method takes

into account the inheritance relations which may exist

between the concepts of the two sets; on the other

hand, it does not take into account the inheritance

Appendix C Reference manual

335

relations with other concepts absent from the two sets

(e.g., the descendants common to several concepts of

the two sets). The parameter is:

other: The other set for the comparison.

•	 keep_most_specific(more_specific_than = None):

Keeps only the most specific concepts in the set and

removes all concepts more general than another

concept from the set (or from the set passed as a

parameter, if it is not None). The parameter is:

more_specific_than: If this parameter is present,

it is the set of more general concepts to consider. If

this parameter is absent, the set itself is used.

•	 keep_most_generic(more_generic_than = None):

Keeps only the most general concepts in the set and

removes all concepts more specific than another

concept from the set (or from the set passed as a

parameter, if it is not None). The parameter is:

more_specific_than: If this parameter is present,

it is the set of more specific concepts to consider. If

this parameter is absent, the set itself is used.

•	 remove_entire_families(only_family_with_

more_than_one_child = True): Removes all “entire

families” from the set and replaces them with their

parent concept. An entire family is a subset of concepts

that make up all of the children of a parent concept.

For example, if the concept “Digestive disease” has

four child concepts “Mouth disease”, “Esophageal

disease”, “Stomach disease”, and “Bowel disease” (and

no other child concepts), then the set {Mouth Disease,

Appendix C Reference manual

336

Esophageal Disease, Stomach Disease and Bowel

Disease} constitutes a complete family, which will be

replaced by their common parent, Digestive Disease,

by this method. The parameter is:

only_family_with_more_than_one_child: If this

parameter is True, a family made of a single element

will be ignored.

•	 lowest_common_ancestors(): Returns the set of the

lowest common ancestors to the concepts of this set.

This method makes it possible to “generalize” several

concepts by one or more concepts of a higher level. For

monoaxial terminologies (such as ICD10), the returned

set contains a single concept.

•	 all_subsets(): Returns the list of all the subsets

included in this set, that is, all the sets including part of

the concepts of the set (including the empty set and the

set itself).

C.9  �Global functions
•	 sync_reasoner(x = None, infer_property_values

= False, debug = 1, keep_tmp_file = False):

Executes the reasoner and applies the inferences to the

quadstore. Parameters are:

x: The object on which to reason. It can be a world

or a list of ontologies. By default, default_world is

used.

infer_property_values: If this parameter is True,

the values of the properties of individuals are also

inferred.

Appendix C Reference manual

337

debug: The level of verbosity (1 by default). The

value 0 prevents any display.

keep_tmp_file: If this parameter is True, temporary

files will not be deleted after reasoning. This option

is useful for debugging if there is a problem with the

reasoning.

•	 sync_reasoner_hermit(x = None, infer_property_

values = False, debug = 1, keep_tmp_file =

False): As before, but forces the use of the HermiT

reasoner.

•	 sync_reasoner_pellet(x = None, infer_property_

values = False, debug = 1, keep_tmp_file =

False): As before, but forces the use of the Pellet

reasoner.

•	 close_world(entity, Properties = None, close_

instance_list = True, recursive = True):

Automatically creates constructors and restrictions to

consider the given entity in a closed world (and not in

an open world as it is the default). Parameters are:

entity: The entity to consider in a closed world. It

can be an individual, a class, or an ontology.

Properties: The list of properties to consider

when closing. If the value is None (the default), all

properties are taken into account.

close_instance_list: If this parameter is True, the

list of individuals in each class is restricted to the

existing individuals.

Appendix C Reference manual

338

recursive: If this parameter is True and the entity

is a class, the close_world() function is called

recursively on subclasses and individuals of the

class.

•	 set_render_func(func): Defines the function to use

to render entities, that is, to transform them into strings

for display.

func: The render function. It must take an entity as a

parameter and return a string.

•	 set_datatype_iri(datatype, iri): Sets (or

redefines) the default IRI associated with a standard

Python datatype.

datatype: The Python datatype (e.g., int or float).

iri: The IRI to associate with this datatype.

•	 declare_datatype(datatype, iri, parser,

unparser): Declares a new Python datatype and

associates it with an OWL datatype and IRI (see 11.6).

datatype: The Python datatype (usually a user-

defined Python class).

iri: The IRI to associate with this datatype.

parser: A function for parsing the new datatype

from a string. This function must accept a string as a

parameter and return the parsed datatype value.

unparser: A function for serializing the new

datatype to a string. This function must accept

a datatype value as a parameter and return the

corresponding string description.

Appendix C Reference manual

339© Lamy Jean-Baptiste 2021
L. Jean-Baptiste, Ontologies with Python, https://doi.org/10.1007/978-1-4842-6552-9

Index

A, B
all_subsets() method, 227
ancestors() method, 94, 214, 252
Annotation

classes, 191, 192
constructs, 190
entities, 187, 188
properties/relations, 190, 191

Application Programming
Interface (API), 5

Automatic reasoning
closed world/local closed

world, 160–162
decision support

system, 179–184
disjoints, 157, 158
inconsistent classes/

inconsistent ontologies,
163, 164

open world assumptions,
158–160

restrictions/reasoning, 165–168

C
_case_sensitive parameter, 98
__class__ attribute, 89, 99

ClassContruct class
complement/not class, 323
intersection class, 323
inverse class, 323
OneOf class, 323
restriction class, 322
union/or class, 323

Classes
create defined class, 146
defined class, example

constructs, 153–156
CSV file, 150
properties, 151, 152

definitions, 146
functions/operators, 42–44
inheritance, 39–41
instance, 36–38
property, 147
special method name, 41

close_world() function, 160, 162,
163, 338

ConstrainedDatatype
class, 165

Constructs
accessing parameters,

138, 140
creating, 135, 136

https://doi.org/10.1007/978-1-4842-6552-9#DOI

340

D
Datatypes

Booleans, 18
character strings, 18, 19
conversion, 27
dictionaries, 23–25
files, 26
integers, 16, 17
lists, 21
sets, 26
tuples, 22

Dating site, 255
DBpedia

definition, 194
languages, 194
loading, 195–201
search engine, 202–204

DBPEDIA_DIR directory, 198
declare_datatype() global

function, 285
default_world.save()

method, 101, 102
de novo ontology, 113

creating classes, 114, 115
creating empty ontology, 113
creating entities,

namespace, 121
destroying entities, 124
destroying ontology, 124
dynamically, creating

classes, 116
example, CSV file, 126

individuals, 127–130, 132, 133

importing ontologies, 125
individuals, creating, 118, 119
modifying entities, 120
multiple definition/forward

declarations, 123
properties, 117, 118
renaming entities

(refractoring), 122
save() method, 124, 125
synchronization, 125

descendants() method, 94, 214,
252, 289

Description logics (DL), 291
destroy_entity(), 124

E
Extensible Markup Language

(XML), 4
extract() method, 226, 333

F
find() method, 226
first() method, 91
Full-text search, 192, 193

G
Gene Ontology (GO),

101, 251–255, 257
get_class_properties()

method, 219, 249, 314
get_inverse_properties() method, 93

INDEX

341

get_ontology() function, 113
get_properties() method, 93
get_relations() method, 97
Global functions, 336–338

H
Hepatosplenomegaly, 220

I, J
import_umls()

function, 208, 209, 230
instances() method, 95
Integrated development

environment (IDE), 10
International Classification of

Diseases, 10th edition
(ICD10), 211

Introspection, 247–249
IRIS pseudo-dictionary, 88
is_a and equivalent_to

attributes, 136
isinstance() Python

function, 139
is_semantic_subset()/is_semantic_

superset()/is_semantic_
disjoint()/semantic_
intersection(), 228

K
keep_most_generic() and

keep_most_specific()
methods, 227

L
load() method, 113

M
Multilingual texts, 189

N
new_class() function, 116
Notations, ontologies, 295

O
Object-oriented language, 2
Ontology, 2

accessing, Python (see Python)
ecology, 2
entities, 3
purposes, 4

ontology class, 307–311
Ontology Web Language (OWL), 4
OWL classes, adding Python

methods, 241–243
OWL ontologies

automatic reasoning, 77–80
bacteria, 53–55
classes, 58
constructors, 76
data properties, 62, 63
definitions, 72–74
differences with object-oriented

programming, 51
disjoints, 58–60
editor, 52

INDEX

342

formats, 52
individuals, 74, 75
objectives, 49
object properties, 64, 66
partitions, 61
practical view, 50
restrictions, 67–70
union/intersection/

complement, 71
Owlready, 5–7
Owlready2

installing from IDLE/Spyder3, 46
installing from terminal, 46
manual installation, 47

P
Polymorphism, 246
PropertyClass class, 317–321
Pseudomonas2, 142
PyMedTermino, 208

ICD10, 211–216
SNOMED CT, 217–221

PyMedTermino2
terminology class, 329

concept, 330–336
PYM.search() method, 231
Python, 4, 9

accessing entities
classes, 94, 95
existential restrictions, 96
individuals, 89
IRIS, 89

properties, 96–98
relations, 90, 91, 93

class (see Classes)
conditions, 28, 29
creating ontology, 147–149
datatypes (see Datatypes)
disk cache, 101
dynamic website,

creating, 107–110
functions, 34–36
generators, 34
imported_ontologies attribute, 86
install, 10
loading ontology, 83, 85
local directory, 105
loops, 30–32, 34
ontology object, methods, 86, 87
modes, 10–13
modifying entity, text, 103, 104
namespaces, 102
Owlready, 83
quadstore, 106
searching entities, 98–100
starting, 10
syntax (see Syntax)

Python module
automatic import, 245
importing, 44
installing, 45
manual import, 244

Q
Quadstore, 6

OWL ontologies (cont.)

INDEX

343

R
repr_concept(), 236
repr_relations(), 237
Resource Description Framework

(RDF), 265
custom datatypes, 285, 286
isolated worlds, 287–289
Owlready, 277–282
RDFlib

creating, 269, 270
reading, 267, 268
removing, 271

SQLite3 database, 283–285
Restrictions, 250

class properties
class_property_type, 141
Listeria class, 143, 144
Pseudomonas2, 142
Pseudomonas3, 143
relationships, 140, 141

rules() and variables()
methods, 177

S
save() method, 124
search() method, 98, 99, 193, 216
search_protein() function, 258, 260
semantic_intersection()

function, 259
Semantic Web Rule Language

(SWRL) rules
advantages, 178
definition, 169
example, 170

Owlready, 174–177
Protege, 173
syntax, 170–173

set_backend() method, 210, 230,
288, 303

set_log_level(), 114
set_render_func(), 103
SPARQL Protocol and RDF Query

Language (SPARQL), 271
creating RDF, 275, 276
prefixes, 274
removing RDF, 276
searching, 272–274

sqlite_tmp_dir parameter, 230
subtract() method, 227
subtract_update() method, 227
SWRL rules

BuiltinAtom class, 328
ClassAtom class, 325
DataRangeAtom class, 326
DatavaluedPropertyAtom

class, 327
DifferentIndividualAtom

class, 328
Imp class, 324, 325
IndividualPropertyAtom

class, 326
SameIndividualAtom class, 327
variable class, 324

Symbolic artificial intelligence, 2
sync_reasoner()

function, 158, 160, 164
sync_reasoner_pellet() and

sync_reasoner_hermit()
functions, 158

INDEX

344

Syntax
comments, 13
help, 14
indentation, 15
variable, 14, 15
writing on screen, 14

Systematized Nomenclature of
Medicine—Clinical Terms
(SNOMED CT), 217

T
Thing class, 315–317
ThingClass class, 311–315

U, V
Unified Medical Language

System (UMLS)
CUI, 222–224
definition, 207
importing terminologies,

208–210, 230, 231
manipulating sets,

PYM, 225–230
ontology of bacteria, 231–237

W, X, Y, Z
World class, 303–307

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Chapter 1: Introduction
	1.1 Who is this book for?
	1.2 Why ontologies?
	1.3 Why Python?
	1.4 Why Owlready?
	1.5 Book outline
	1.6 Summary

	Chapter 2: The Python language: Adopt a snake!
	2.1 Installing Python
	2.2 Starting Python
	2.3 Syntax
	2.3.1 Comments
	2.3.2 Writing on screen
	2.3.3 Help
	2.3.4 Variables
	2.3.5 Indentation

	2.4 Main datatypes
	2.4.1 Integer (int) and floating-point numbers (float)
	2.4.2 Booleans (bool)
	2.4.3 Character strings (str)
	2.4.4 Lists (list)
	2.4.5 Tuples (tuple)
	2.4.6 Dictionaries (dict and defaultdict)
	2.4.7 Sets (set)
	2.4.8 Files (open)
	2.4.9 Conversion between datatypes

	2.5 Conditions (if)
	2.6 Loops (for)
	2.7 Generators
	2.8 Functions (def)
	2.9 Classes (class)
	2.9.1 Classes and instances
	2.9.2 Inheritance
	2.9.3 Special method names
	2.9.4 Functions and operators for object-oriented programming

	2.10 Python modules
	2.10.1 Importing a module
	2.10.2 Installing additional modules

	2.11 Installing Owlready2
	2.11.1 Installing Owlready2 from terminal
	2.11.2 Installing Owlready2 from IDLE or Spyder (or any Python shell)
	2.11.3 Manual installation of Owlready2

	2.12 Summary

	Chapter 3: OWL ontologies
	3.1 An ontology… what does it look like?
	3.2 Creating ontologies manually with the Protégé editor
	3.3 Example: An ontology of bacteria
	3.4 Creating a new ontology
	3.4.1 Classes
	3.4.2 Disjoints
	3.4.3 Partitions
	3.4.4 Data properties
	3.4.5 Object properties
	3.4.6 Restrictions
	3.4.7 Union, intersection, and complement
	3.4.8 Definitions (equivalent-to relations)
	3.4.9 Individuals
	3.4.10 Other constructs

	3.5 Automatic reasoning
	3.6 Modeling exercises
	3.7 Summary

	Chapter 4: Accessing ontologies in Python
	4.1 Importing Owlready
	4.2 Loading an ontology
	4.3 Imported ontologies
	4.4 Listing the content of the ontology
	4.5 Accessing entities
	4.5.1 Individuals
	4.5.2 Relations
	4.5.3 Classes
	4.5.4 Existential restrictions
	4.5.5 Properties

	4.6 Searching for entities
	4.7 Huge ontologies and disk cache
	4.8 Namespaces
	4.9 Modifying entity rendering as text
	4.10 Local directory of ontologies
	4.11 Reloading an ontology in the quadstore
	4.12 Example: creating a dynamic website from an ontology
	4.13 Summary

	Chapter 5: Creating and modifying ontologies in Python
	5.1 Creating an empty ontology
	5.2 Creating classes
	5.2.1 Creating classes dynamically

	5.3 Creating properties
	5.4 Creating individuals
	5.5 Modifying entities: relations and existential restrictions
	5.6 Creating entities within a namespace
	5.7 Renaming entities (refactoring)
	5.8 Multiple definitions and forward declarations
	5.9 Destroying entities
	5.10 Destroying an ontology
	5.11 Saving an ontology
	5.12 Importing ontologies
	5.13 Synchronization
	5.14 Example: populating an ontology from a CSV file
	5.14.1 Populating with individuals
	5.14.2 Populating with classes

	5.15 Summary

	Chapter 6: Constructs, restrictions, and class properties
	6.1 Creating constructs
	6.2 Accessing construct parameters
	6.3 Restrictions as class properties
	6.4 Defined classes
	6.5 Example: creating the ontology of bacteria in Python
	6.6 Example: populating an ontology with defined classes
	6.6.1 Populating using class properties
	6.6.2 Populating using constructs

	6.7 Summary

	Chapter 7: Automatic reasoning
	7.1 Disjoints
	7.2 Reasoning with the Open-World assumption
	7.3 Reasoning in a closed world or in a local closed world
	7.4 Inconsistent classes and inconsistent ontologies
	7.5 Restriction and reasoning on numbers and strings
	7.6 SWRL rules
	7.6.1 SWRL syntax
	7.6.2 SWRL rules with Protégé
	7.6.3 SWRL rules with Owlready
	7.6.4 Advantages and limits of SWRL rules

	7.7 Example: an ontology-based decision support system
	7.8 Summary

	Chapter 8: Annotations, multilingual texts, and full-text search
	8.1 Annotating entities
	8.2 Multilingual texts
	8.3 Annotating constructs
	8.4 Annotating properties and relations
	8.5 Creating new annotation classes
	8.6 Ontology metadata
	8.7 Full-text search
	8.8 Example: Using DBpedia in Python
	8.8.1 Loading DBpedia
	8.8.2 A search engine for DBpedia

	8.9 Summary

	Chapter 9: Using medical terminologies with PyMedTermino and UMLS
	9.1 UMLS
	9.2 Importing terminologies from UMLS
	9.3 Loading terminologies after initial importation
	9.4 Using ICD10
	9.5 Using SNOMED CT
	9.6 Using UMLS unified concepts (CUI)
	9.7 Mapping between terminologies
	9.8 Manipulating sets of concepts
	9.9 Importing all terminologies in UMLS
	9.10 Example: Linking the ontology of bacteria with UMLS
	9.11 Example: A multi-terminology browser
	9.12 Summary

	Chapter 10: Mixing Python and OWL
	10.1 Adding Python methods to OWL classes
	10.2 Associating a Python module to an ontology
	10.2.1 Manual import
	10.2.2 Automatic import

	10.3 Polymorphism with type inference
	10.4 Introspection
	10.5 Reading restrictions backward
	10.6 Example: Using Gene Ontology and managing “part-of” relations
	10.7 Example: A “dating site” for proteins
	10.8 Summary

	Chapter 11: Working with RDF triples and worlds
	11.1 RDF triples
	11.2 Manipulating RDF triples with RDFlib
	11.2.1 Reading RDF triples
	11.2.2 Creating new RDF triples with RDFlib
	11.2.3 Removing RDF triples with RDFlib

	11.3 Performing SPARQL requests
	11.3.1 Searching with SPARQL
	11.3.2 SPARQL prefixes
	11.3.3 Creating RDF triples with SPARQL
	11.3.4 Removing RDF triples with SPARQL

	11.4 Accessing RDF triples with Owlready
	11.5 Interrogating the SQLite3 database directly
	11.6 Adding support for custom datatypes
	11.7 Creating several isolated worlds
	11.8 Summary

	Appendix A: Description logics
	Appendix B: Notations for formal ontologies
	Appendix C: Reference manual
	C.1 World class
	C.2 Ontology class
	C.3 Classes (ThingClass class)
	C.4 Individuals (Thing class)
	C.5 Properties (PropertyClass class and its descendants)
	C.6 Constructs (Contruct class and its descendants)
	C.6.1 Restriction class
	C.6.2 Intersection (And class)
	C.6.3 Union (Or class)
	C.6.4 Complement (Not class)
	C.6.5 Property inverse (Inverse class)
	C.6.6 Individual set (OneOf class)

	C.7 SWRL rules
	C.7.1 Variable class
	C.7.2 Rules (Imp class)
	C.7.3 Class assertion atom (ClassAtom class)
	C.7.4 Datatype assertion atom (DataRangeAtom class)
	C.7.5 Object property value atom (IndividualPropertyAtom class)
	C.7.6 Data property value atom (DatavaluedPropertyAtom class)
	C.7.7 Same individual atom (SameIndividualAtom class)
	C.7.8 Distinct individual atom (DifferentIndividualAtom class)
	C.7.9 Built-in function atom (BuiltinAtom class)

	C.8 PyMedTermino2
	C.8.1 Terminology class
	C.8.2 Concept in a terminology
	C.8.3 Set of concepts (Concepts class)

	C.9 Global functions

	Index

