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 Abstract: A suite of standards known as the Semantic Web is transforming the Internet to a semantic 
graph rather than a graph of hypertext links.  This paper will describe how various ideas and initiatives in 
artificial intelligence knowledge representation influenced its design. We begin with the seminal work by 
Alan Turing and Alonzo Church that led to the definition of Turing Machines, enabled digital computing, 
and provided the mathematical theory of computation which has been one of the determining factors for 
Artificial Intelligence knowledge representation. We then provide a brief history of artificial intelligence 
knowledge representation starting with groundbreaking researchers such as Newell and Simon, then to the 
first "AI boom" driven primarily by rule-based expert systems followed by major initiatives such as Cyc 
and the DARPA Knowledge Sharing Initiative. We will discuss how innovations from these initiatives 
affected standards that in turn led to the suite of standards known as the Semantic Web. We conclude with 
a brief overview of the most important issues currently facing those who wish to see widespread adoption 
of Semantic Web technology in industry. 

 

A R T I C L E  H I S T O R Y 

Received:  
Revised:  
Accepted:  
 
DOI:  

Keywords: Knowledge Representation, Semantic Web, Web Ontology Language, OWL, SPARQL, SHACL, SWRL, 
RDF/RDFS 

1. INTRODUCTION 

 In 2001 Tim Berners-Lee, James Hendler, and Ora Lassila 
wrote one of the most influential papers in the history of 
Artificial Intelligence (AI) and Knowledge Representation [1].  
The paper described efforts to develop knowledge 
representation languages such as the DARPA Agent Markup 
Language (DAML) that integrated with the Internet and 
provided it with a semantic layer [2].  Languages such as 
DAML provided the foundation for a new vision for the 
Internet called the Semantic Web. The Internet started as 
essentially a huge network graph formed by URLs and the 
various links to and from them. The Semantic Web is 
transforming it into a semantic graph rather than a graph of 
hypertext links. In hypertext, a link can have countless 
meanings. It can lead to a page where one can login to the site, 
to a document that describes the author of the page, to a page 
on a related topic, etc. The semantics of these links are not at 
all explicit.  Rather, they are buried implicitly in the HTML 
and code that manipulates the pages. The Semantic Web 
captures the meanings of these various nodes and links and 
the metadata required to efficiently utilize them. It thus 
provides the foundation for intelligent agents and other new 
types of systems that go far beyond the conventional Internet.  

This paper examines key AI research and how it influenced  
Semantic Web tools and standards. We begin with the 

mathematical foundations for all digital computers in the work 
of Alan Turing and Alonzo Church (section 2.1), and early 
work in AI by pioneers such as Newell and Simon (section 
2.2). The advent of forward-chaining rule-based systems set 
the stage for the first practical applications (section 2.3). 
Limitations of the rule-based paradigm led to work on frames, 
which influenced both object-oriented programming 
languages and led to further research on representational 
power (sections 2.4-2.5).  Differing philosophical approaches 
arose at this point (section 2.6).  One approach is currently 
ascendant, but history and some critical observations make 
them important to understand because the pendulum may 
someday swing the other way (section 2.7). 

The combination of growing power and a desire to scale to 
larger challenges engendered  two major initiatives focused 
upon enabling very large reusable knowledge bases (Section 
3) Resulting tools and lessons learned became essential 
influences on the core Semantic Web technologies that 
emerged, affecting how Semantic Web data is connected 
(section 4) and how its meaning is captured (section 5).  Those 
tools and techniques initially focused upon open public use. 
The most recent initiative, spurred by work on Knowledge-
Graphs at major corporations such as Google, Amazon, and 
Facebook bring in additional requirements for more closely 
controlled systems that provide structure and the elimination 
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of data silos to information behind the corporate firewall 
rather than on the public Internet (section 6).  

We conclude with a brief discussion of significant issues and 
next steps facing those who want to see wide-spread adoption 

of Semantic Web technology to the Internet and industry 
(section 7). Figure 1 shows a timeline that summarizes some 
of the most significant events to be discussed in this paper.  

 

Figure 1. Knowledge Representation Timeline 
 
2. Early History of Knowledge Representation 

2.1. A Fundamental Tradeoff in Knowledge 
Representation and Reasoning 

The roots of the semantic web and AI trace all the way back 
to the mathematical discoveries that provided the theoretical 
foundation for all modern digital computers. In 1936, Alan 
Turing published a paper [3] where he provided a solution to 
the Entscheidungsproblem, which had been described by 
David Hilbert as one of the most important unsolved problems 
in mathematics at that time. 

The challenge of the Entscheidungsproblem was to create an 
algorithm for First Order Logic (FOL) that could take as input 
any set of formulas, and determine whether or not they were 
valid. An algorithm for propositional logic (Truth Tables) had 
existed for centuries. FOL extends propositional logic with 
only two quantifications: existential (“there exists some x 
such that…”) and universal (“for all x such that…”).  Thus, 
most mathematicians thought that it should be solvable via 
some equivalent algorithm.  

As is not uncommon in math and science two researchers 
working independently hit on a solution to the same problem 
at almost the same time. In addition to Turing’s proof, Alonzo 
Church created a very different proof a few months earlier. 
Both Turing and Church proved that -- contrary to previous  
expectation -- the Entscheidungsproblem is unsolvable [4]. 
Another way to say this is that they proved FOL was 
undecidable.  

Turing defined the Turing machine model for his proof -- the 
mathematical model that all modern digital computers are 
based on. Church defined the Lambda Calculus.  This, along 
with Newell, Shaw, and Simon’s IPL (developed for their 
Logic Theory Machine), was the inspiration for John 
McCarthy’s LISP programming language [5]. LISP is 
essentially a programming language implementation of 
Church’s lambda calculus.  It was one of the most important 
languages for AI research for several decades.  Tree and graph 
based data structures trace their roots back to it, as do 
recursive programming techniques.  LISP’s ability to blur the 

distinction between data and code, and hence to write self-
modifying programs, had a major influence on AI research. 

The Turing/Church proofs defined one of the most important 
concepts for knowledge representation in artificial 
intelligence. First Order Logic was seen by most researchers 
as the most expressive language to describe an algorithm [6]. 
However, since FOL was undecidable, any knowledge 
representation language that had the full power of FOL would 
also be undecidable. I.e., any automated reasoner for a 
language with the full expressive power of FOL would not be 
guaranteed to terminate.  

A paper by Hector Levesque and Ron Brachman [7] captured 
for AI researchers that a similar principle governs knowledge 
representation languages: the more expressive the language, 
the slower was any automated reasoner that could support it. 
This trade-off between the expressive power of a knowledge 
representation language vs. the performance of automated 
reasoners remains to this day as a driving force in designing 
AI knowledge representations. 

2.2 Early Work in Theorem Proving and General Problem 
Solving 

Newell, Shaw, and Simon’s Logic Theory Machine, one of 
the first AI systems, emulates the proof process used to prove 
theorems in Whitehead and Russel's three volume Principia 
Mathematica. It was an early example of automated theorem 
proving and automated reasoning.  It introduced concepts 
such as forward- and backward- chaining and of decomposing 
problems into sub-problems. These were essential to virtually 
all knowledge representation research to come.  

Newell, Shaw, and Simon next worked on a General Problem 
Solver. Their goal was to “understand the information 
processes that underlie human intellectual, adaptive, and 
creative abilities” [8]. 

2.3 Rule-based systems 

This research resulted in many useful insights about the 
structure of goals and plans but was overwhelmed by 
complexity with respect to real world problems. In addition, 
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solving general problems requires common sense reasoning 
which will be discussed in section 3. The first applied 
examples of AI research were expert systems, pioneered by 
projects such as Mycin. Mycin and other expert systems 
significantly reduced the expressiveness of their knowledge 
representation languages to languages based only on if-then 
rules and inferencing based on forward and backward 
chaining of rules [9]. 

Edward Feigenbaum, an early student of Simon’s (Simon was 
Feigenbaum's PhD thesis advisor at CMU), [10] was a key 
player in this shift.  Feigenbaum had two major insights: 

1. Knowledge is as – if not more – important as 
reasoning methods in performing tasks requiring 
intelligence.   

2. The best way to explore this was to refocus from 
general intelligence to what might effectively be 
considered idiot savants that were narrowly focused 
on a single domain such as medical diagnosis.    

Feigenbaum and his colleague’s success had the technical 
result of cementing the view of systems as divided into 
knowledge bases and inference engines, and the practical 
effect of establishing the feasibility of commercial, practical 
AI applications [6]. 

Rule-based systems fueled the first AI boom in the 1980’s 
[11]. The rule-based languages and inference engines of 
researchers’ expert systems soon transitioned from the 
laboratory to industry. This was fueled by the development of 
new commercial products called expert system shells that 
refined the rule-based languages and inference engines from 
academic research into industrial-strength tools. Over and 
above specific applications, the benefits of these rule-based 
shells for rapid prototyping was a very significant – and 
somewhat underappreciated -- accomplishment of this first 
wave of AI.  

In the 1980’s Information Technology (IT) projects typically 
entailed months of specification followed by months before 
the first version of a system was available. A process graph 
for that approach resembled a waterfall, with each step 
(Analysis, Design, Development, etc.) requiring completion 
before the next began, leading to it being called the Waterfall 
Software Development model. Providing some of the first 
major impetus to change this model is one of the 
underappreciated impacts of the first wave of AI. Not only did 
AI bring new technologies into IT systems, it exposed 
industry to new development models, enabling rapid iterations 
in weeks rather than months and emphasizing performing 
many phases (e.g., design, development, and testing) in 
parallel rather than sequentially [11].  

This new approach to software development dovetailed with 
research and industry experience in software engineering, 
particularly Barry Boehm’s paper describing an alternative to  
the Waterfall Model known as the Spiral Model employed at 
TRW Defense Systems to build embedded software for 
satellites [12]. These threads eventually culminated in the 
Agile model, now practiced by many industry leading 
software development groups, which has shown significant 

 
1 At the time Andersen Consulting.  

benefits to reducing risk, decreasing cost, and increasing 
quality of software [13]. 

It is common to view Expert Systems as a “failed” idea that 
led to an “AI winter” [14]. There is an alternative interpretation 
of this history: rule-based systems succeeded, but AI-centric 
tools failed. As rule-based systems were integrated with other 
industry tools, it soon became apparent that rules were a 
powerful tool for defining complex business logic of any kind. 
The rapid prototyping capabilities of rule-based shells 
allowed rapid reviews of the logic to validate it was correct. 
The high level of the rules (i.e., that they were a very limited 
subset of FOL) meant that with minimal training, end users 
could review and, in some cases, even modify the rules 
themselves – a big leap over filing change request forms.  

During this time, one of the authors, Michael DeBellis, was a 
member of the AI group in Accenture's1 Technology Services 
Organization. In that experience, deployed systems were 
virtually never classic standalone expert systems. Instead, 
rule-based shells were used to understand complex logic and 
then integrated with larger mainframe systems and databases.  
Alternatively, the rules replaced traditional specifications and 
were re-coded in conventional languages of the time such as 
COBOL. 

For example, one of the first AI projects that gained 
significant attention within Accenture was for an Oil and Gas 
client. The accounting and tax rules for Oil and Gas are 
extremely complex. An Accenture team had been at the client 
site for apx. 6 months using Accenture's Method/1 Waterfall 
methodology to capture these requirements. However, they 
were unable to satisfy the client that the documentation 
adequately defined the complex business logic. A team of one 
staff and one manager from the AI group spent 2 months 
developing a prototype with a PC rule-based shell. This 
satisfied the client that the rules were adequately defined and 
the rules from the PC shell were then reimplemented in 
COBOL.2 

As a result, enterprise systems began including rule-based 
systems as part of their toolkit. Enterprise Resource Planning 
(ERP) products such as SAP included rules for defining 
business logic [15]. Customer Relationship Management 
(CRM) tools such as Siebel included rules for defining 
promotions to targeted customers [16]. Enterprise Application 
Integration (EAI) middleware tools such as Tibco included 
rules to automate event processing [17].  In addition, most 
standards and vendors for enterprise programming 
environments began to include rules as a standard component 
of the tools that IT developers had at their disposal [18] [19]. 

In this interpretation, the first wave of AI hardly failed. On the 
contrary, it succeeded so well that the technology was 
absorbed into mainstream enterprise products -- which killed 
the market for standalone rule-based tools. One observation 
supporting this revisionist history is that several AI tool 
vendors refocused or were absorbed into enterprise tools. For 
example, Intellicorp, a company founded by Feigenbaum and 
the vendor of KEE (Knowledge Engineering Environment, 
one of the most sophisticated first wave AI tools), shifted from 

2 This and the previous paragraphs are supported by 
conversations with Chunka Mui a colleague in the Accenture 
AI group.  
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being a general purpose AI tool to a strategic partnership with 
the largest ERP vendor in the world, SAP [20]. 

2.4 Semantic Nets to Frames 

While rule-based systems were catching commercial 
attention, representational research began focusing upon 
Semantic Networks. A Semantic Network is an undirected 
graph of concepts (nodes) and connections (links). Semantic 
networks were first utilized by Quillian as a way to model 
human memory [21]. 

Lindsay, Norman, and Rumelhart developed a knowledge 
representation system called MeMod (Memory Model) that 
employed semantic network graph representations with typed 
is-a hierarchies in which concepts were defined as nodes 
within a graph of is-a’s, with other typed links connecting 
them to other typed nodes, inheritance of attributes defined as 
links to other types, and a notion of concepts as type 
definitions and instances as type instances [22] [23]. These 
semantic graphs were called is-a hierarchies because they 
modelled concepts starting from very general (e.g., Animal) 
progressing to more specific (e.g., Dog) and with the leaf 
nodes of the graph as instances of concepts. E.g., Dog is-a 
Animal and Fido is-a Dog. 

The definition of certain types of links in a semantic network 
to represent specific kinds of knowledge such as is-a was 
described by Ron Brachman as the epistemological layer for 
a semantic network [24]. 

This led to a new model for knowledge representation 
organized around is-a hierarchies first called Schemas by 
researchers such as Don Norman and  David Rumelhart.[25] 
[26] and later called Scripts and Frames by researchers such as 
Roger Schank [27].   

2.5 Objects and Frames 

One of the next advances in industrial use of AI was to 
integrate Frame research with the rule-based inferencing of 
expert systems.  Much of the inferencing in expert systems 
that was represented as rules could be modeled as 
classification of a node into a Frame hierarchy. For example, 
determining the diagnosis for a disease could be viewed as 
finding the appropriate position for a Diagnosis instance in an 
is-a graph starting from very general concepts such as 
BloodDisease and navigating to specific concepts such as 
SickleCellAnemia.  

The data that was queried and set in rules were typically no 
longer simply variables but rather slots on frames. The data 
stored in frame languages was described as an ontology. 
Eventually, virtually all of the expert system shell vendors 
included some capability to define Frame hierarchies in 
addition to rules. 

At the same time Object-Oriented Programming (OOP) 
languages such as Smalltalk were beginning to be used in 
industry [28]. 

The distinction between frame-based languages and OOP is 
full of ambiguity.  Message-passing was incorporated in 
several frame-based languages, such as the Knowledge 
Engineering Environment (KEE), [29] and in OOP languages 
such as Smalltalk. There was a large amount of cross 
pollination between the two communities in both academia 
and industry, facilitated by common roots to MIT’s AI Lab 

and Xerox PARC.  Mark Stefik, one such bridge, brought his 
work on OOP in Common LISP to Smalltalk [30].  

Object-oriented programmers were more influenced by 
software engineering. Object-oriented programming was 
essentially a natural extension of the theory of abstract data 
types and the design goal of encapsulation [31]. Frame-based 
systems were focused on AI research, embracing a wide array 
of various techniques for different domains and problems. 
Frame systems thus tended to be much more eclectic and 
diverse. Some of the capabilities of frame systems included: 

1. Facets on slots. Slots were the equivalent of 
properties in OOP. However, unlike those languages 
a slot could also have additional information stored 
on it. For example, when was the slot last accessed, 
who accessed it, a certainty value representing how 
certain the reasoning was that resulted in the value of 
the slot, etc. This additional information was stored 
on a data structure known as a facet. Each slot could 
have as many facets associated with it as the designer 
required. This allowed slots with facets to essentially 
be n-ary relations rather than just binary. For 
example, hasEmployer could be a ternary relation 
between an Employee, the Employer and the 
startDate when they were first employed.  This 
capability is very similar to property graphs and 
RDF*. This and other Semantic Web analogs of 
Frame language capabilities will be discussed below 
in sections 5-7.  

2. Default values. A default value for each slot could 
be defined, either as a facet or as a separate feature. 
When a new instance of a class was created, any slot 
with a default value would automatically be filled 
with that value. Default values were usually 
inheritable. E.g., if the default value for hasCovering 
on Mammal was Fur then all subclasses of Mammal 
such as Dog would inherit that default value unless it 
was over-ridden in the same way as methods can be 
over-ridden by new sub-classes.  

3. Triggers. Triggers could be defined for slots. This 
was code that would be executed whenever a value 
was put and/or retrieved from the slot.  

4. Constraints. Slots could include various data 
integrity constraints such as the maximum or 
minimum values required for the slot, the datatype, a 
range of legal numeric values, etc. In Frame 
languages there was no distinction between using 
constraints for reasoning and using them to validate 
data integrity.  

5. Strong rule integration. Frame systems often had a 
strong integration with rule-based inference engines. 
Not only could they invoke a rule base to infer over 
an ontology, they could also include capabilities such 
as truth maintenance (when a fact changed that 
would impact information inferred by rules the rules 
would automatically be re-invoked), possible worlds 
(the ability to create different versions of an ontology 
based on alternative assumptions), and explanation 
engines (the ability to explain how a certain value 
was inferred using the trace of rules that fired).  
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Although Frame languages haven’t died out completely, OOP 
is now the dominant paradigm. In industrial software 
development OOP has moved from a leading-edge technology 
to a best practice followed by most IT organizations for new 
software development projects with mainstream languages 
such as Java and Python. Although frame languages are still 
used in academia, even there they have mostly given way to 
OOP.  

OOP came to dominate because of elegance and simplicity, 
coupled with a larger support base due to interest outside AI. 
Features 2-4 in the list of Frame capabilities can be achieved 
by the use of constructor, get, and set methods, a standard 
practice of OOP [32]. A constructor is a method used to create 
a new instance of a class. Among other things, it can set 
default values for properties. A get or set method can check 
constraints or trigger arbitrary code every time a property is 
accessed or set [33].   

Facets can be implemented in OOP via a design pattern that 
creates a new class that stores the information that would be 
stored in facets. For example,  the ternary relation 
hasEmployer cited above could be implemented in OOP by 
creating a new class called Employment with properties 
hasEmployer and startDate. The result would be that the 
property on the Employee class would be  hasEmployment 
with its range being the Employment class.  

When designing large systems, the simplicity of OOP made 
collaboration between different developers and re-use of code 
simpler. The diverse capabilities of Frame languages meant 
that different developers would choose different approaches 
to implement the same functionality and would make the code 
of one developer different than that of another. By limiting the 
options of the language to methods OOP made code more 
uniform and hence more maintainable and reusable [33].  

In addition, OOP enabled encapsulation. Because the data of 
a class was only available via get and set methods, the 
implementation details of the class could be hidden from 
developers that re-used it. Thus, the implementation could be 
changed and as long as the public interfaces (methods) didn’t 
change, the code of those who reused the class would still 
work. A classic example is a Dictionary class might store its 
elements at first using an array and then later convert to a hash 
table for better performance. Encapsulation means that the 
code that reuses the Dictionary class won’t need to be 
modified because the implementation detail of using an array 
or hash table will be hidden from the objects that use the class 
[33].  

2.6 Formalist (Neat) vs. Heuristic (Scruffy) Thinking 

In parallel with these technical developments, researchers 
began noting two loose and not cleanly differentiated 
philosophical approaches.  These had many names, but 
common underlying themes. One theme contrasted starting 
points: tackling AI challenges and asking what 
representations helped vs. starting with a representation and 
exploring extensions and uses.  This closely correlated with 
focus on demonstrating a capability vs. concern for 
decidability, performance, and confidence in outcomes.  This 

 
3 Personal communication between Michael DeBellis and 
Schuyler Laparle, graduate student in Linguistics at UC 
Berkeley.  

correlated with lesser or greater concern with the ability to 
analyze and predict behavior and performance of the tools 
used. Fuzzy as these distinctions were, they are worth 
understanding because of implications they still hold for 
current and future systems.  

Within the Frame community, the two different approaches 
were labelled by Roger Schank as “Scruffies” vs. “Neats”. 
The Neats were researchers such as John McCarthy and Ron 
Brachman who wanted to start from a principled (formal) 
framework and ask what could be accomplished within it. The 
Scruffies were people such as Schank who took a more 
bottom-up approach and utilized whatever technology they 
thought was most appropriate for their specific problem.  

These attempts to differentiate into schools of thought were 
not well-defined. Very influential researchers, e.g.,  Herb 
Simon, bridged them. Simon appreciated the power of formal 
tools, but he also took a very pragmatic approach and 
advocated that the principles governing intelligent systems 
were best studied by trying to build them and learning from  
what did and didn’t work [34]. 

Similar distinctions arose in the Linguistics community under 
the rubric of  “west coast” vs. “east coast”. West coast 
linguists were influenced by people such as George Lakoff at 
the University of California at Berkeley.3 Lakoff’s students 
study semantic concepts such as metaphor and are 
significantly influenced by research in cognitive science such 
as Ellen Rosche’s experiments that demonstrate how human 
concepts don’t always conform to formal set theory [35]. There 
was a significant amount of overlap between the Scruffy 
approach to AI and the West Coast approach to Linguistics. 
For example, in his book, “Women, Fire, and Dangerous 
Things,” Lakoff goes into significant detail about the concept 
of Frames and Roger Schank’s work [36]. 

The east coast linguists were most influenced by Noam 
Chomsky at MIT. . Chomsky extended Turing and Church’s 
computational theory work by defining a hierarchy of 
mathematical computation models from the most simple 
(Finite State Machines) to the most complex (Turing 
Machines), along with the kind of languages that they could 
parse. E.g., Finite State Machines can only parse context free 
languages. Recursively enumerable languages such as all 
human natural languages require a Turing Machine. In 
addition to linguistics, Chomsky's language hierarchy had 
significant impact on computer science such as compiler 
design [37]. 

Chomsky and his students use logic and set theory models 
such as X-bar theory to explore mathematical models for the 
syntax rules of human languages. Chomsky's current work 
hypothesizes that ultimately all language transformations can 
be decomposed into  basic set formation capabilities:  adding 
an element to a set or taking the union of two sets [38].  

Returning to AI, some of the leaders in addition to  Schank 
closer to the “Scruffy” mindset were Norman, and Rumelhart 
[39]. They defined Frames (also called Scripts) as a way to 
partially explain human language processing. The core idea 
was that part of understanding human language were high 
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level concepts that set expectations. Computationally, this 
was a way to prune the huge search space of possible parsing 
options for any sentence. For example, when a person enters 
a restaurant, they invoke the restaurant script. This is a frame 
with various slots such as server, menu, meal, etc. This frame 
is used to guide the parsing of sentences within that context.  

On the more formal side, Ronald Brachman was one of the 
people whose research contributed substantially to what 
would become OWL. In work that began with his 1977 Ph.D. 
thesis, Brachman extended semantic networks into the first 
formal Frame language called KL-One. KL-One had an 
automated reasoner called a classifier. An issue with Scruffy 
frame languages and OOP languages is that while there are 
guidelines as to what it means for one class to be a subclass of 
another, these guidelines are only defined in documentation. 
They are not formalized in the language itself. KL-One was 
the first language to change this. In previous languages the 
user manually defines a hierarchy of classes from general to 
more specific and then finally to the leaf nodes which are 
instances. In KL-One the user defines a set of axioms (logical 
statements) and the classifier automatically defines the class 
hierarchy and other aspects of the ontology that would 
normally be defined manually. The classifier is a type of 
automated theorem prover. Similar to inference engines for 
rule-based systems, classifiers reason over a subset of FOL. 
However, the classifiers were able to cover a larger (hence 
more expressive) subset of FOL than rule-based inference 
engines because the language was not restricted to if-then 
rules. 

2.7. Description Logic 

Brachman found that the range of expressivity in KL-One was 
too great for practical use.  This led to research by Brachman 
and others into the theoretical foundations for formal Frame 
languages, and consequent definition of Description Logic. 
Recall that Turing and Church proved that First Order Logic 
(FOL) was undecidable. The primary goals of Description 
Logic research were: 

1. Find the maximal subset of FOL that was still 
decidable.  

2. Formally describe the various levels of complexity 
that Frame language could have and the implications 
each level had on the performance of the reasoner 
[40]. 

As will be seen below, Brachman’s approach is currently 
ascendant.  Nevertheless, considerations raised in the 
preceding section linger. Note that virtually all common 
programming (e.g., Java, Python, Lisp) and query languages 
(e.g., SQL) are not decidable -- almost all programmers have 
accidentally written code with infinite loops. Researchers 
such as John Sowa have pointed to this to argue that what 
really matters is having a maximally expressive language that 
allows developers to define knowledge in the most powerful 
and intuitive format [41]. This opinion is not restricted to 
Sowa. For example, in a workshop on Term Subsumption 
languages (the technical name for languages such as KL-One 
and Loom) the question of decidability was a frequent topic 
of discussion [42]. In the real world, decidability is not the 

 
4 Email communication Martin O'Connor to Michael 
DeBellis. 

ultimate issue, performance is. A language that is decidable 
but takes a decade to return a solution is useless.4 On the other 
hand, some languages such as SPARQL are potentially 
undecidable but good implementations (e.g., the SPARQL 
implementation in AllegroGraph) provide warnings to 
developers when queries are at risk of causing excessive time 
or infinite loops [43].  OWL itself includes a profile (OWL 2 
RDF Semantics, previously OWL Full) that is not decidable 
[44]. OWL Full is avoided by virtually all Semantic Web 
developers and the emphasis in the community at this point in 
time is clearly on decidability. Whether the pendulum will 
swing back is unknown, but history suggests the possibility. 

3. Building AI Systems at Scale: Very Large Ontologies 

The next phase of AI research in knowledge representation 
was to a great extent driven by the problem of how to build, 
manage, and use very large ontologies. Up to this point, 
research tended to be confined to individual problem domains 
such as diagnosing diseases. The goal of managing large 
ontologies was primarily driven by three requirements to scale 
AI to larger problems: 

1. The need to solve the problem of common sense 
reasoning.  

2. The success of OOP and the resulting emphasis on 
building systems via re-using predefined 
components as opposed to developing custom 
software from scratch. 

3. Combining structured (machine readable) and 
unstructured (human readable) information in an 
integrated representation and reasoning 
environment. 

Common sense reasoning has been and still is one of the most 
critical unsolved problems of AI [45]. In the pop science press 
it is common to hear people discuss “General AI”. Most AI 
researchers think that General AI will, at a minimum, require 
addressing Common Sense reasoning. I.e., in any typical 
human conversation there are countless examples where in 
order to understand a sentence the listener must apply 
common sense knowledge that even children simply take for 
granted. Facts such as that things fall down and not up, that 
fire is hot, that water is wet, etc. While humans take this for 
granted, AI researchers have found it to be a very difficult 
problem. 

Issue 2 was due to the fact that the business world and US 
Department of Defense both experienced great benefits from 
the use of OOP. However, one of the promises of OOP, that 
systems could be composed from reusable components, while 
significantly aided by OOP languages still failed to be 
completely realized due to problems related to finding and re-
using software components. It was thought that techniques 
from knowledge representation might help to address these 
problems and finally realize the goal of software construction 
via composition rather than duplicative development.  

Issue 3 was a result of an evolution in the understanding of 
how AI could best work in the real world. One of the lessons 
learned from Expert Systems was that standalone systems that 
simply took in input and provided answers had limitations. 
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Most humans were reticent to blindly turn over decision 
making to computers [46]. Users have much more trust and 
desire to utilize systems that are interactive and can explain 
their reasoning [47]. Another driver for 3 was the wide-spread 
adoption of knowledge management systems such as Lotus 
Notes through many US corporations. These systems 
demonstrated that there was a market for systems that could 
represent and reason over structured and unstructured 
knowledge. Also, the growing realization of the major impact 
that the Internet was having on reshaping modern culture and 
business was a key driver to the requirement for systems that 
could represent and manage both machine and human 
readable knowledge.  

Tom Malone was among the first to attempt to bridge 
structured knowledge representations and unstructured data, 
as part of an intelligent email system that supported frames 
and allowed rules about structured elements but allowed slots 
to be filled with either structured elements or free text [48]. 
Neches’ research group tried to take this further, attempting to 
build a human-in-the-loop reasoner that would seek assistance 
to put it back on track when a typed slot was filled with 
untyped data [49] [50].   

There were two major efforts in the US focused on these 
issues. The Cyc system focused on common sense reasoning. 
The DARPA Knowledge Sharing Initiative focused on 
reusable components and structured/unstructured knowledge.  
Table 1 summarizes the different approaches of these two 
programs which will be described next in sections 3.1 and 3.2.  

Research Focus and 
Approach 

Research Program 

 Cyc Knowledge Sharing 
Initiative (KSI} 

Very large ontologies ✓ ✓ 

Common Sense Reasoning ✓  

Assembling Systems from 
Reusable Modules 

 ✓ 

Structured and 
unstructured knowledge 

 ✓ 

Model Integration Common 
Upper 
Model 

Distributed Agents & 
Ontology Mapping 

Architecture  Tightly 
Coupled 

Loosely Coupled 

Table 1. Summary of Cyc and KSI Approaches 

3.1 Cyc: Representing Common Sense Knowledge 

Cyc was a system initially developed at the Microelectronics 
Computer Consortium (MCC) in Austin Texas. MCC was put 
together as a reaction to a similar large program called the 
Fifth Generation project out of Japan where major technology 
companies decided to pool their investments in AI research in 
order to spur new business applications. MCC had investment 
from IBM. Dell Computer, Sun Microsystems, Motorola, and 
many others [51].  

Cyc was led by Doug Lenat (a former student of  Feigenbaum) 
and was an attempt to develop a very large collection of 
ontologies to represent common sense and encyclopedic 

knowledge. The Cyc project created their own Frame based 
language and inference engine, as well as tools to enter 
information into their ontologies [52].  

The Cyc project was the largest and most ambitious effort to 
address representing common sense knowledge. They had a 
large number of developers as well as content creators whose 
main job was to create entries for both common sense and 
encyclopedic knowledge.  

The approach used for the Cyc environment was to tightly 
couple all the various component tools. I.e., each tool was 
designed specifically for Cyc and with little regard for how to 
separate the tool out to be used independently or to replace 
one component with an alternative. The advantage of tight 
coupling is that it often allows more features and better 
performance than loose coupling. The disadvantage is that it 
is an “all or nothing” approach. It is difficult to take one tool 
from the suite of tools and use it on its own and is also difficult 
to swap out one tool with another (e.g., a commercial 
product).  

3.2 The DARPA Knowledge Sharing Initiative 

Starting more or less at the same time as Cyc was another 
project to deal with large ontologies. This project was 
sponsored by the US Defense Advanced Research Projects 
Agency (DARPA) and was called the Knowledge Sharing 
Initiative [53]. 

Whereas Cyc was driven by the goal of representing common 
sense reasoning the knowledge sharing initiative was driven 
by the goal of facilitating reuse of software and knowledge. 
Consequently, the Knowledge Sharing Initiative took a 
diametrically opposite approach to their architecture as Cyc. 
Whereas Cyc was tightly coupled, the Knowledge Sharing 
Initiative was loosely coupled. Tools were developed for 
different aspects of the problem in a manner such that they 
could both be used independently from the project and so that 
they defined interface specifications that would facilitate 
swapping out one tool and replacing it with another as long as 
it implemented the appropriate interfaces. The Knowledge 
Sharing initiative also had a requirement to facilitate agent-
based systems and supported a range of efforts to build 
publicly shared ontologies.    For a detailed comparison of the 
two initiatives, see [54]. There were several tools that resulted 
from the Knowledge Sharing Initiative that had significant 
impacts on the Semantic Web. These included:  

• KRSL. The Knowledge Representation Standard 
Language was an attempt to get community support 
for a knowledge representation language 
specification.  It did not lead to an implementation 
and was subsumed by LOOM 
[55] for practical applications but was influential in 
thinking that fed into DAML. Loom was a frame-
based knowledge representation language that was 
modeled after KL-One. It included a classifier that 
could restructure the model as a result of inferences 
about the axioms in the ontology [56]. These systems 
are discussed below. 

• KIF, the Knowledge Interchange Format 
spearheaded by Mike Genesereth and Richard Fikes 
[57] provided a basic knowledge representation 
language rooted in FOL facilitating knowledge 
exchange among various knowledge representation 
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systems such as Loom and KEE. KIF was not meant 
to be a language for developers but rather for agents 
and other systems transmitting knowledge encoded 
in differing representation languages. The designers 
of KIF described it as analogous to PostScript. 
PostScript was not a language used by word 
processors but a common interchange language so 
that documents in Microsoft's RTF format, HTML, 
etc. could have a common standard for sending 
documents to printers.  

• The Shared Ontology Working Group, led by Tom 
Gruber [58], supported collaborations on topic-
specific ontologies, in stark contrast to the broad 
“upper model” goals of Cyc.   

• KQML, the Knowledge Query Manipulation 
Language spearheaded by Tim Finin [59] was a 
protocol for enabling agents to query and/or modify 
ontologies and knowledge bases controlled by 
external systems. Several of the same developers 
worked on both KQML and SPARQL and KQML 
significantly influenced the design of SPARQL. 
SPARQL will be discussed in section 5.  

3.3 Lessons Learned 

Despite very different approaches, what both Cyc and the 
Knowledge Sharing Initiative ultimately demonstrated is that 
widespread adoption of any shared ontology is at best slow 
and difficult.  The fundamental problem is two-fold: inherent 
complexity and engineering compromises. 

The inherent complexity problem starts with the fact that the 
world is complex and multi-faceted.  Consequently, attempts 
to model it in symbolic structures grow large.   

An example of the difficulty of defining one comprehensive 
upper model can be found in research funded by the DARPA 
Knowledge Sharing Initiative and conducted by Jerry Hobbs 
in the early '90s, first at SRI and later at USC/ISI. Hobbs' goal 
was to develop a sharable ontology of time. Time is 
fundamental to many applications.  Issues as diverse as time-
stamping an email or scheduling the launch of satellite depend 
upon it.  The effort was regarded as simple.  It was expected 
to take weeks to months.  It was dropped after several years.  
It was simply too complicated to build an all-encompassing 
model, in part because practical resolution depends on 
context5.    For example, consider modeling time ranges.  
What should happen when, "I'm free from noon to 1:00 for an 
hour meeting" meets, "Well, I'm free from 12:01 to 1:01"?   
One might want those comparisons to be somewhat flexible.  
Not so, however, if the time range in question is an orbital 
launch window, where accepting even a multi-decimal 
fraction of a second outside the range could lead to an 
expensive disaster.  But when one says 1:00 pm, do you mean 
local or Greenwich?  Does 1:00:00.001 pm match?  How 
about 1:00:00.000000001? 

Considerations like these inevitably led to engineering 
compromises driven by a range of considerations.  Practical 
applications necessitate decisions to do the best possible 
within available time and budget, and/or doing no more than 

 
5 Jerry Hobbs, personal communication to Robert Neches, 
1997. 

needed for intended uses. This has important implications for 
the reusability of ontologies and directions for future work.  

An immediate implication is that evaluating the reusability of 
a particular ontology for a particular purpose is much easier if 
one understands multiple factors.  These include: the 
context(s) of prior use, the context(s) of intended future use, 
the underlying formal but highly philosophical thinking 
behind modeling decisions, and the impacts of engineering 
trade-offs taken upon the form of the models.  Thus, both 
inherent complexity and engineering considerations impact 
sharing and reuse of ontological models. 

A direct consequence of this is a problem analogous to code 
re-use in traditional software engineering.  There is a strong 
force toward proliferation of duplicative and overlapping 
alternatives. Little has changed here since these risks were 
pointed out in 1993 (see [54]). The barrier cost of the 
intellectual effort required for understanding, evaluating, and 
adopting a pre-existing ontology creates a strong temptation 
to simply build one's own from scratch.  Another factor is the 
strong (not entirely baseless) fear that re-use, being a close 
neighbor to standardization, can both become a barrier to 
innovation and a weapon of control over markets.   

These concerns appear to be shared by major companies.  It is 
worth noting that Google, Microsoft, Yahoo and Yandex have 
chosen to co-fund what is effectively a crowdsourced 
community-driven ontology development [60] in a bottom-
up, grassroots fashion – much as advocated by graduates of 
the DARPA Knowledge Sharing Initiative [61, 62, 63]. 

Code re-use has grown significantly, in part because software 
engineering principles of modularity, encapsulation, and 
interface specification have been absorbed.  In coding, also, 
the productivity benefits have been clearly shown to be too 
significant to ignore.  Reuse of ontological models will not 
parallel that growth until some software engineering 
principles are developed, and appropriate development 
environments are provided. 

These considerations define some important directions for 
future work.  We need to think very hard about ontology 
development environments.  The importance of capturing and 
reasoning about design rationale has been long recognized in 
other areas of design and engineering [64] [65]. Ontology 
developers need to find ways to do the same.  

A complementary alternative is to look more closely into 
ontology mapping as a research and development direction.  
Rather than trying to build all-encompassing models, this 
direction would focus on tools that automatically or semi-
automatically try to identify equivalences and differences 
between related ontologies in order to bridge between them.  
This approach was first introduced by Gio Wiederhold [66] [67] 
[68]. As ontologies transition from the lab to industry the 
problem of ontology mapping has been the impetus for a 
startup in Europe called Dynaccurate6 that has shown 
significant time and money savings by automating the 
mapping of various healthcare and defense ontologies [69]. 

A particularly innovative extension of this approach was 
demonstrated by Baoshi Yan.[70]  Yan built an end-user 
oriented environment supporting "bottom-up ontology 

6 https://www.dynaccurate.com/  

https://www.dynaccurate.com/
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alignment" in which users collecting documents picked up 
semantic annotations associated with them.  As users 
organized those documents, Yan's tool helped them create 
their own ontology in which to place them.  At the same time,  
it compared their personal ontology to the ones associated 
with the documents' original semantic annotations.  These 
comparisons were used both to suggest mappings between 
users' ontologies and others, and to suggest refinements to 
users' personal ontologies. 

One can imagine that, if tools like Yan's were in widespread 
use, "grassroots ontologies" might emerge which gained 
broad acceptance (or, at the very least, acceptance within 
communities of like-minded collaborators).  The process by 
which they would emerge and evolve might go a long way 
toward ensuring utility, as well, since they would be tested 
through usage at every step. 

There seems to be relatively little recent work picking up on 
these threads.  In the recent 2021 International Semantic Web 
Conference, for example, only one out of 54 papers focused 
on ontology translation [71], and one on ontology alignment 
[72]. A smattering of others dealt with automated generation 
of ontologies from less-structured sources.  However, those, 
although they do accelerate availability of ontologies, do not 
address the challenges of understanding, re-using, extending, 
or adapting them.  It is very much time to get back to the 
challenges of software engineering and development 
environments supporting sharing and re-use.  Without more 
work on these topics, significant cost, productivity, and 
maintenance barriers to widespread ontology adoption will 
remain. 

4. Internet Research: From Hypertext to Linked Data.  

 

As these AI knowledge research initiatives were proceeding, 
Internet researchers began developing new technologies to 
add semantics to the Internet that significantly leveraged 
them. Figure 2 shows the connections between various 
research programs leading towards the standards that provide 
the foundation for the Semantic Web known as Linked Data.  

The first technology that addressed semantics was XML. 
XML is a powerful meta-language that allows developers to 
define domain specific tags and structure for their documents. 
XML was the first and is still one of the most widely used 
languages to go beyond simple hypertext and to add basic 
semantics to HTML pages that could be accessed by bots for 
better searches and to enable agent like systems that can 

perform functions such as search for the lowest price for a 
purchased item.  

XML is a subset of the ISO 8879 Standardized General 
Markup Language (SGML). SGML was designed for 
document sharing within large organizations such as 
governments and the military. XML is designed to be simpler 
than SGML and with Internet documents as one of the most 
important driving use cases [73]. 

XML provided basic semantics but is still oriented around the 
concept of a document. The next step after XML was the 
definition of the Meta-Content Framework (MCF). MCF was 
originally a research project funded by Apple Computer and 
was highly influenced by the Knowledge Representation 
community, specifically Cyc, KRSL, and KIF. Unlike XML, 
MCF had an object rather than a document focus. It described 
objects with attributes and relations to other objects [74]. 

MCF was a main influence to the Resource Description 
Framework (RDF). RDF is the foundation for the Semantic 
Web. It has two primary datatypes: resources and literals. A 
resource has a unique identifier that is an Internationalized 
Resource Identifier (IRI). An IRI looks similar to a URL. In 
fact, all URLs are IRIs. The difference is that a URL is 
typically meant to be a document or some resource that is 
designed to be viewed in a browser. An IRI can be any 
resource such as a class, property, or instance. Every object in 
an OWL ontology is a resource and hence has a unique IRI. A 
literal is a simple datatype such as a string, integer, or date. 
The fundamental representation scheme in RDF is the triple. 
A triple has a Subject, a Predicate, and an Object. The subject 
and predicate must be resources (IRIs). The object can be 
either a resource or a literal. RDF results in network graphs 
because the subject of one triple can be the object of another 
and vice versa [75]. 

RDF is a basic semantic network language. The next step was 
to add what Brachman defined as the epistemological layer to 
RDF. The creation of nodes such as classes and predicates 
such as properties and type. This layer is called the RDF 
Schema language (RDFS). Note that although RDFS adds 
basic meta-model concepts and links it does not support a 
formal semantics such as Description Logic.  

The graph structures of RDF/RDFS requires a query language 
to traverse, retrieve, and modify information in the graph. This 
language is SPARQL. SPARQL is a recursive acronym: 
SPARQL RDF Query Language. SPARQL was influenced by 
SQL in order to make it more accessible to the large 
community of database developers. The two most important 
differences between SPARQL and SQL are: 

1. SPARQL can match (have a wildcard) for any or all 
parts of a triple. A SPARQL query with wildcards 
for all three parts of the triple will retrieve the entire 
graph.  

2. SPARQL has built-in capabilities to link to and 
request data from any resources on the Internet. 
Queries can match and retrieve data from many 
different sources (e.g., DBpedia and Geonames) 
even though those sources were designed 
independently with neither system knowing about 
the design of the other. This in effect gives every 
SPARQL user a huge, distributed database of all 

Figure 2. Research Leading to Linked Data 
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RDF data on the global Internet accessible from their 
local client machine.  

This concept of defining queries that match and retrieve data 
from multiple heterogeneous sources on the Internet is known 
as Linked Data [75]. 

5.  Knowledge Representation Meets the Internet 

This brings us to the most powerful semantic language in the 
Semantic Web: The Web Ontology Language (OWL). Figure 
3 shows a graph of the most important knowledge 
representation languages and their relations to each other and 
eventually to OWL. 

 KL-One was a groundbreaking language, but it was too slow 
for application to real problems. New Implementation of KL-
One (NIKL) was developed at USC/ISI and was an attempt to 
develop a Description Logic (DL) language with similar 
power as KL-One but with performance that could be applied 
to real problems. It was followed by the Loom language also 
developed at USC/ISI by a team led by Bob McGregor. Loom 
was a very powerful language implemented in LISP. Later 
versions were implemented on top of the Common LISP 
Object System (CLOS) which gave it good performance and 
portability. Loom was one of the first DL languages used to 
develop applications that were utilized by actual users from 
the Defense Logistics Agency and Aerospace and Defense 
contractors taking part in the USC/ISI FAST project. The 
FAST project was far ahead of its time, demonstrating 
Business to Business (B2B) commerce at least a decade before 
anyone in the commercial space had conceived of the idea 
[50]. 

The Knowledge-Representation Standard Language (KRSL) 
discussed above was part of the Knowledge Sharing initiative. 
While it never resulted in an actual development language it 
shaped the goals of the Knowledge Sharing initiative to 
encourage knowledge re-use via interoperability and mapping 
rather than by simply mandating use of one knowledge 
representation language or shared model. Also, as discussed 
in section 5, KRSL was one of the influences on the MCF 
language which was a direct influence on RDF.  

SHOE7 was a very innovative language developed at the 
University of Maryland by Jim Hendler. It was one of the first 

 
7 https://www.cs.umd.edu/projects/plus/SHOE/  
8 https://www.w3.org/TR/owl2-overview/  
9 As with modern databases (e.g., triggers) the distinction 
between data and process is not clear cut. The Semantic Web 
Rule Language (SWRL) provides the capability to 
implement many types of business logic. However, it has 

languages to attempt to directly add DL semantics to HTML 
pages.  

The Ontology Interchange Language (OIL) was a European 
initiative that defined DL semantics on top of XML. The 
DARPA Agent Markup Language (DAML) was part of the 
Knowledge Sharing initiative and was the first attempt to add 
DL semantics to RDF. The European researchers working on 
OIL and the American researchers working on DAML soon 
realized that their ultimate goals were very similar and pooled 
their efforts to develop the DAML + OIL language which was 
one of the most significant influences on the Web Ontology 
Language (OWL).  

The endpoint (at least so far) of this research was of course 
OWL.8 OWL is built on RDFS and was standardized by the 
W3C. OWL is supported by the Protégé ontology editor from 
Stanford [76]. Protégé far exceeds the expectations for most 
research tools. Its robustness, documentation, and support 
from an active user community, equals many commercial 
tools. It also continues to be a platform for innovation via 
many plugins developed by researchers, which seamlessly 
integrate with it and provide tools for SPARQL, SHACL, and 
many other features.  In addition to Protégé, OWL is also 
supported in commercial offerings from vendors such as 
Franz Inc., Ontotext, Pool Party, Stardog, and Top Quadrant. 

The primary difference between OWL and languages such as 
Loom is that in order to achieve scale up to what is known in 
industry as "big data" OWL focuses only on representing the 
data of a model. Languages such as Loom and KEE could 
model hierarchies of classes and also include features such as 
message passing to implement process. They were self-
contained tools that could be used to build entire applications. 
That is not the case with OWL. OWL only models data.9 To 
implement process developers must utilize APIs to 
programming languages such as Java, Python, and Lisp. For 
examples and more detail on OWL and other Semantic Web 
standards we recommend the book [77]. For a hands-on 
tutorial on Protégé and several of the most important plugins 
see [78]. 

6. Shapes Constraint Language (SHACL) 

The newest Semantic Web standard is the Shapes Constraint 
Language (SHACL). The original vision of the Semantic Web 
was to provide a semantic layer for the public Internet. There 
has been success with this in open crowd sourced knowledge 
graphs10 such as DBpedia, Wikidata, and Geonames.  
However, the technology is also having significant impact 
behind corporate firewalls, and this has created a requirement 
for a new language focused on data integrity constraints.  
SHACL seeks to address that need and is gaining great 
traction as one of the most significant Semantic Web 
standards for use in Industry [79]. 

SHACL and OWL seem similar at a first glance. Any axiom 
that can be defined in OWL can be defined in SHACL and 
almost any constraint that can be defined in SHACL can be 

limitations and for any real application a programming 
language must be integrated with OWL.  
10 In industry knowledge graph is the more popular term and 
in academia ontology is. Although there are some subtle 
differences, for the purposes of this paper, we will treat them 
as synonyms. 

Figure 3. Research Leading toward OWL 

https://www.cs.umd.edu/projects/plus/SHOE/
https://www.w3.org/TR/owl2-overview/
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defined in OWL.  The difference isn’t what can be defined, 
but rather how the logic is utilized.  

OWL ontologies are meant for reasoning on valid data. For 
example, if the range for a property is defined as the class 
Person, and an instance of the class ElectronicPart is entered 
as the value of that property, the OWL reasoner won’t trigger 
an error but will instead wrongly infer that the ElectronicPart 
is also an instance of Person. If the two classes are defined as 
disjoint in OWL (i.e., their intersection is the empty set), the 
OWL reasoner will trigger an error but in so doing will make 
the ontology inconsistent and unable to utilize any inferences 
until the inconsistency is resolved.  

Also, the OWL reasoner adopts the Open World Assumption 
(OWA). This is arguably essential for use with the public 
Internet. Its design  rationale is that no ontology could 
encompass all the data on the Internet.  Thus, if a value for a 
particular property is missing, the reasoner shouldn’t infer that 
there is no such value (as systems built upon the far more 
common Closed World Assumption would).  The OWA 
means that the reasoner won’t trigger errors for certain kinds 
of axioms that require a minimum number of values for a 
property. It assumes that such values could exist somewhere 
in the Internet but just haven’t been found yet.  

The considerations that make OWL work for the public 
Internet, don’t work for systems behind corporate firewalls.  
Data integrity constraints are essential for enterprise data. If 
each customer must have an email address in their account, 
there must be a way to alert the enterprise that something is 
wrong if an email is not defined for a customer. 

These concerns are what drove the creation of SHACL. 
SHACL uses the Closed World Assumption rather than the 
OWA. It will signal errors if there is a constraint that requires 
a minimum number of values for a property and the proper 
number of values are not currently in the knowledge graph. 
Also, SHACL does not make the entire knowledge graph 
inconsistent when a data integrity violation is found. SHACL 
provides the developer with the option to define various kinds 
of errors as well as with the option to define code that may 
attempt to repair certain types of data integrity violations. E.g., 
if a data property has a range of integer and the string “1” is a 
value for some individual, SHACL can attempt to coerce the 
string into an integer datatype. 

In relation to knowledge representation, SHACL brings back 
some of the capabilities of the original Frame languages such 
as constraint checking and default values.  

7. Current & Future Developments 

As often happens in research, the original vision of the 
researchers tends to evolve as concepts transition from the lab to 
industry. The initial vision of the Semantic Web was focused 
primarily on providing a semantic layer for the public Internet. 
There have been great achievements toward this goal with Linked 
Data.  However, the technology only began to achieve significant 
recognition in industry when Google coined the term “knowledge 
graph” [80] and began to discuss their knowledge graph project, 
which they use to provide direct answers rather than just links in 
response to queries. Google’s trail blazing created a flood of 
interest as technology leaders such as Facebook, LinkedIn, 
Amazon, and others began creating knowledge graph projects 
behind their firewalls to better understand, control, and utilize 
their data [81]. 

The technology is still in its infancy in terms of industry use.  The 
opportunities, as well as the challenges, are enormous. Along 
with research issues touched upon in Section 4.3, some of the 
most important of these are: 

1. Privacy. Knowledge graphs and visualization tools 
make explicit information that is left implicit in 
documents. An example of this is the CODO project 
[82], which created a knowledge graph for information 
about the Covid-19 pandemic in India. The information 
that the researchers used was all from publicly available 
spreadsheets published on the Internet. However, when 
certain information (e.g., tracing paths of infection from 
one patient to another) that was implicit in the 
spreadsheets became explicit in the knowledge graph, 
owners of the data became deeply concerned and 
stopped releasing their data.  

2. Alternatives to W3C Standards. It is inevitable that 
there will always be deviations from most standards. 
Vendors want to include new features that differentiate 
their products, and specific use cases can encourage 
alternative techniques from the accepted standards. 
This is currently happening with Semantic Web 
standards. Property graphs are a competitor to 
RDF/RDFS. There is currently no accepted standard for 
property graphs, it is a term used for various 
implementations of the concept. The main difference 
between property graphs and RDF is that the links 
(properties) in a property graph can also have attributes. 
I.e., property graphs provide a capability similar to 
facets on slots in Frame languages. There are also 
alternatives to SPARQL that are designed to query 
property graphs rather than RDF. One of the most 
popular is the Cypher query language from Neo4J [83]. 
Another alternative to the current W3C Semantic Web 
stack is RDF* which is being proposed as a W3C 
standard. It essentially provides similar features as 
property graphs but built on top of RDF. However, it 
would not be compatible with OWL or the current 
implementation of SPARQL. Several knowledge graph 
vendors that adhere to W3C standards such as Franz 
Inc. also provide proprietary extensions that enable the 
same capabilities as property graphs.  

3. OWL and Big Data. Most of the large, frequently used 
knowledge graph implementations to date have utilized 
RDF/RDFS or Property Graphs. One reason is that 
OWL is newer than RDF. Many large projects such as 
DBpedia began in RDF and continued to use that 
technology. In addition, there remains skepticism 
among many in industry as to whether the OWL 
reasoner can scale to very large data. However, as Jim 
Hendler points out in his presentation "Whither OWL" 
[84] it may be that only subsets of OWL can provide the 
performance needed for Big Data, but those subsets 
may be enough for most use cases. This is supported by 
the fact that many of the current vendors of triplestore 
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products11 such as AllegroGraph from Franz Inc. 
support a large but not complete subset of OWL and 
achieve very fast performance for very large knowledge 
graphs [85].   

4. Development environments for building, finding, 
and re-using ontologies. Excellent tools such as the 
Protégé ontology editor from Stanford are robust and 
widely used.  Nevertheless, as discussed in section 4.3, 
the problem of defining modular ontologies, mapping 
between ontologies, and capturing information about 
the context and design decisions behind an ontology 
still exist only in the lab. Achieving the same level of 
knowledge re-use as the software engineering 
community has in code re-use will require significant 
effort. E.g., consider sophisticated automated OOP 
build and testing tools such as Apache Ant and Maven. 
Nothing comparable (in terms of scale and robustness) 
currently exist for Semantic Web technology.  

5. Automation of Knowledge Graph Creation and 
Maintenance. Crowd sourced Linked Data assets such 
as DBpedia are enormous. DBpedia has approximately 
20 billion RDF triples.[86] Manually creating and 
maintaining resources that large is a daunting task. One 
of the most interesting areas of research is the use of 
techniques such as machine learning to develop, 
review, maintain, and extend large knowledge graphs 
[87]. 

Knowledge representation techniques that date to the very 
beginning of the field are only now coming to fruition in a way 
that makes them practical for large scale usage on the Internet and 
industry. The future potential is enormous.  It will yield whole 
new ways of leveraging data to enhance human knowledge and 
understanding. Given the challenges we face as a world 
community, it will be a resource that is sorely needed.  
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