
Unpublished Manuscript: Please Do Not Copy or Circulate
 Recent Advances in Computer Science and Communications, Year, Volume, Pagination 1

 2213-2759/19 $58.00+.00 © 2019 Bentham Science Publishers

ARTICLE TYPE

Knowledge Representation and The Semantic Web: An Historical Overview
of Influences on Emerging Tools

Michael DeBellisa and Robert Nechesb

amdebellissf@gmail.com michaeldebellis.com, San Francisco, USA b Formerly University of Southern California, now
retired, Los Angeles, USA

 Abstract: A suite of standards known as the Semantic Web is transforming the Internet to a semantic
graph rather than a graph of hypertext links. This paper will describe how various ideas and initiatives in
artificial intelligence knowledge representation influenced its design. We begin with the seminal work by
Alan Turing and Alonzo Church that led to the definition of Turing Machines, enabled digital computing,
and provided the mathematical theory of computation which has been one of the determining factors for
Artificial Intelligence knowledge representation. We then provide a brief history of artificial intelligence
knowledge representation starting with groundbreaking researchers such as Newell and Simon, then to the
first "AI boom" driven primarily by rule-based expert systems followed by major initiatives such as Cyc
and the DARPA Knowledge Sharing Initiative. We will discuss how innovations from these initiatives
affected standards that in turn led to the suite of standards known as the Semantic Web. We conclude with
a brief overview of the most important issues currently facing those who wish to see widespread adoption
of Semantic Web technology in industry.

A R T I C L E H I S T O R Y

Received:
Revised:
Accepted:

DOI:

Keywords: Knowledge Representation, Semantic Web, Web Ontology Language, OWL, SPARQL, SHACL, SWRL,
RDF/RDFS

1. INTRODUCTION

 In 2001 Tim Berners-Lee, James Hendler, and Ora Lassila
wrote one of the most influential papers in the history of
Artificial Intelligence (AI) and Knowledge Representation [1].
The paper described efforts to develop knowledge
representation languages such as the DARPA Agent Markup
Language (DAML) that integrated with the Internet and
provided it with a semantic layer [2]. Languages such as
DAML provided the foundation for a new vision for the
Internet called the Semantic Web. The Internet started as
essentially a huge network graph formed by URLs and the
various links to and from them. The Semantic Web is
transforming it into a semantic graph rather than a graph of
hypertext links. In hypertext, a link can have countless
meanings. It can lead to a page where one can login to the site,
to a document that describes the author of the page, to a page
on a related topic, etc. The semantics of these links are not at
all explicit. Rather, they are buried implicitly in the HTML
and code that manipulates the pages. The Semantic Web
captures the meanings of these various nodes and links and
the metadata required to efficiently utilize them. It thus
provides the foundation for intelligent agents and other new
types of systems that go far beyond the conventional Internet.

This paper examines key AI research and how it influenced
Semantic Web tools and standards. We begin with the

mathematical foundations for all digital computers in the work
of Alan Turing and Alonzo Church (section 2.1), and early
work in AI by pioneers such as Newell and Simon (section
2.2). The advent of forward-chaining rule-based systems set
the stage for the first practical applications (section 2.3).
Limitations of the rule-based paradigm led to work on frames,
which influenced both object-oriented programming
languages and led to further research on representational
power (sections 2.4-2.5). Differing philosophical approaches
arose at this point (section 2.6). One approach is currently
ascendant, but history and some critical observations make
them important to understand because the pendulum may
someday swing the other way (section 2.7).

The combination of growing power and a desire to scale to
larger challenges engendered two major initiatives focused
upon enabling very large reusable knowledge bases (Section
3) Resulting tools and lessons learned became essential
influences on the core Semantic Web technologies that
emerged, affecting how Semantic Web data is connected
(section 4) and how its meaning is captured (section 5). Those
tools and techniques initially focused upon open public use.
The most recent initiative, spurred by work on Knowledge-
Graphs at major corporations such as Google, Amazon, and
Facebook bring in additional requirements for more closely
controlled systems that provide structure and the elimination

mailto:amdebellissf@gmail.com

Knowledge Representation and the Semantic Web: An Historical Overview Journal Name, 2019, Vol. 0, No. 0 2

of data silos to information behind the corporate firewall
rather than on the public Internet (section 6).

We conclude with a brief discussion of significant issues and
next steps facing those who want to see wide-spread adoption

of Semantic Web technology to the Internet and industry
(section 7). Figure 1 shows a timeline that summarizes some
of the most significant events to be discussed in this paper.

Figure 1. Knowledge Representation Timeline

2. Early History of Knowledge Representation

2.1. A Fundamental Tradeoff in Knowledge
Representation and Reasoning

The roots of the semantic web and AI trace all the way back
to the mathematical discoveries that provided the theoretical
foundation for all modern digital computers. In 1936, Alan
Turing published a paper [3] where he provided a solution to
the Entscheidungsproblem, which had been described by
David Hilbert as one of the most important unsolved problems
in mathematics at that time.

The challenge of the Entscheidungsproblem was to create an
algorithm for First Order Logic (FOL) that could take as input
any set of formulas, and determine whether or not they were
valid. An algorithm for propositional logic (Truth Tables) had
existed for centuries. FOL extends propositional logic with
only two quantifications: existential (“there exists some x
such that…”) and universal (“for all x such that…”). Thus,
most mathematicians thought that it should be solvable via
some equivalent algorithm.

As is not uncommon in math and science two researchers
working independently hit on a solution to the same problem
at almost the same time. In addition to Turing’s proof, Alonzo
Church created a very different proof a few months earlier.
Both Turing and Church proved that -- contrary to previous
expectation -- the Entscheidungsproblem is unsolvable [4].
Another way to say this is that they proved FOL was
undecidable.

Turing defined the Turing machine model for his proof -- the
mathematical model that all modern digital computers are
based on. Church defined the Lambda Calculus. This, along
with Newell, Shaw, and Simon’s IPL (developed for their
Logic Theory Machine), was the inspiration for John
McCarthy’s LISP programming language [5]. LISP is
essentially a programming language implementation of
Church’s lambda calculus. It was one of the most important
languages for AI research for several decades. Tree and graph
based data structures trace their roots back to it, as do
recursive programming techniques. LISP’s ability to blur the

distinction between data and code, and hence to write self-
modifying programs, had a major influence on AI research.

The Turing/Church proofs defined one of the most important
concepts for knowledge representation in artificial
intelligence. First Order Logic was seen by most researchers
as the most expressive language to describe an algorithm [6].
However, since FOL was undecidable, any knowledge
representation language that had the full power of FOL would
also be undecidable. I.e., any automated reasoner for a
language with the full expressive power of FOL would not be
guaranteed to terminate.

A paper by Hector Levesque and Ron Brachman [7] captured
for AI researchers that a similar principle governs knowledge
representation languages: the more expressive the language,
the slower was any automated reasoner that could support it.
This trade-off between the expressive power of a knowledge
representation language vs. the performance of automated
reasoners remains to this day as a driving force in designing
AI knowledge representations.

2.2 Early Work in Theorem Proving and General Problem
Solving

Newell, Shaw, and Simon’s Logic Theory Machine, one of
the first AI systems, emulates the proof process used to prove
theorems in Whitehead and Russel's three volume Principia
Mathematica. It was an early example of automated theorem
proving and automated reasoning. It introduced concepts
such as forward- and backward- chaining and of decomposing
problems into sub-problems. These were essential to virtually
all knowledge representation research to come.

Newell, Shaw, and Simon next worked on a General Problem
Solver. Their goal was to “understand the information
processes that underlie human intellectual, adaptive, and
creative abilities” [8].

2.3 Rule-based systems

This research resulted in many useful insights about the
structure of goals and plans but was overwhelmed by
complexity with respect to real world problems. In addition,

Knowledge Representation and the Semantic Web: An Historical Overview Journal Name, 2019, Vol. 0, No. 0 3

solving general problems requires common sense reasoning
which will be discussed in section 3. The first applied
examples of AI research were expert systems, pioneered by
projects such as Mycin. Mycin and other expert systems
significantly reduced the expressiveness of their knowledge
representation languages to languages based only on if-then
rules and inferencing based on forward and backward
chaining of rules [9].

Edward Feigenbaum, an early student of Simon’s (Simon was
Feigenbaum's PhD thesis advisor at CMU), [10] was a key
player in this shift. Feigenbaum had two major insights:

1. Knowledge is as – if not more – important as
reasoning methods in performing tasks requiring
intelligence.

2. The best way to explore this was to refocus from
general intelligence to what might effectively be
considered idiot savants that were narrowly focused
on a single domain such as medical diagnosis.

Feigenbaum and his colleague’s success had the technical
result of cementing the view of systems as divided into
knowledge bases and inference engines, and the practical
effect of establishing the feasibility of commercial, practical
AI applications [6].

Rule-based systems fueled the first AI boom in the 1980’s
[11]. The rule-based languages and inference engines of
researchers’ expert systems soon transitioned from the
laboratory to industry. This was fueled by the development of
new commercial products called expert system shells that
refined the rule-based languages and inference engines from
academic research into industrial-strength tools. Over and
above specific applications, the benefits of these rule-based
shells for rapid prototyping was a very significant – and
somewhat underappreciated -- accomplishment of this first
wave of AI.

In the 1980’s Information Technology (IT) projects typically
entailed months of specification followed by months before
the first version of a system was available. A process graph
for that approach resembled a waterfall, with each step
(Analysis, Design, Development, etc.) requiring completion
before the next began, leading to it being called the Waterfall
Software Development model. Providing some of the first
major impetus to change this model is one of the
underappreciated impacts of the first wave of AI. Not only did
AI bring new technologies into IT systems, it exposed
industry to new development models, enabling rapid iterations
in weeks rather than months and emphasizing performing
many phases (e.g., design, development, and testing) in
parallel rather than sequentially [11].

This new approach to software development dovetailed with
research and industry experience in software engineering,
particularly Barry Boehm’s paper describing an alternative to
the Waterfall Model known as the Spiral Model employed at
TRW Defense Systems to build embedded software for
satellites [12]. These threads eventually culminated in the
Agile model, now practiced by many industry leading
software development groups, which has shown significant

1 At the time Andersen Consulting.

benefits to reducing risk, decreasing cost, and increasing
quality of software [13].

It is common to view Expert Systems as a “failed” idea that
led to an “AI winter” [14]. There is an alternative interpretation
of this history: rule-based systems succeeded, but AI-centric
tools failed. As rule-based systems were integrated with other
industry tools, it soon became apparent that rules were a
powerful tool for defining complex business logic of any kind.
The rapid prototyping capabilities of rule-based shells
allowed rapid reviews of the logic to validate it was correct.
The high level of the rules (i.e., that they were a very limited
subset of FOL) meant that with minimal training, end users
could review and, in some cases, even modify the rules
themselves – a big leap over filing change request forms.

During this time, one of the authors, Michael DeBellis, was a
member of the AI group in Accenture's1 Technology Services
Organization. In that experience, deployed systems were
virtually never classic standalone expert systems. Instead,
rule-based shells were used to understand complex logic and
then integrated with larger mainframe systems and databases.
Alternatively, the rules replaced traditional specifications and
were re-coded in conventional languages of the time such as
COBOL.

For example, one of the first AI projects that gained
significant attention within Accenture was for an Oil and Gas
client. The accounting and tax rules for Oil and Gas are
extremely complex. An Accenture team had been at the client
site for apx. 6 months using Accenture's Method/1 Waterfall
methodology to capture these requirements. However, they
were unable to satisfy the client that the documentation
adequately defined the complex business logic. A team of one
staff and one manager from the AI group spent 2 months
developing a prototype with a PC rule-based shell. This
satisfied the client that the rules were adequately defined and
the rules from the PC shell were then reimplemented in
COBOL.2

As a result, enterprise systems began including rule-based
systems as part of their toolkit. Enterprise Resource Planning
(ERP) products such as SAP included rules for defining
business logic [15]. Customer Relationship Management
(CRM) tools such as Siebel included rules for defining
promotions to targeted customers [16]. Enterprise Application
Integration (EAI) middleware tools such as Tibco included
rules to automate event processing [17]. In addition, most
standards and vendors for enterprise programming
environments began to include rules as a standard component
of the tools that IT developers had at their disposal [18] [19].

In this interpretation, the first wave of AI hardly failed. On the
contrary, it succeeded so well that the technology was
absorbed into mainstream enterprise products -- which killed
the market for standalone rule-based tools. One observation
supporting this revisionist history is that several AI tool
vendors refocused or were absorbed into enterprise tools. For
example, Intellicorp, a company founded by Feigenbaum and
the vendor of KEE (Knowledge Engineering Environment,
one of the most sophisticated first wave AI tools), shifted from

2 This and the previous paragraphs are supported by
conversations with Chunka Mui a colleague in the Accenture
AI group.

Knowledge Representation and the Semantic Web: An Historical Overview Journal Name, 2019, Vol. 0, No. 0 4

being a general purpose AI tool to a strategic partnership with
the largest ERP vendor in the world, SAP [20].

2.4 Semantic Nets to Frames

While rule-based systems were catching commercial
attention, representational research began focusing upon
Semantic Networks. A Semantic Network is an undirected
graph of concepts (nodes) and connections (links). Semantic
networks were first utilized by Quillian as a way to model
human memory [21].

Lindsay, Norman, and Rumelhart developed a knowledge
representation system called MeMod (Memory Model) that
employed semantic network graph representations with typed
is-a hierarchies in which concepts were defined as nodes
within a graph of is-a’s, with other typed links connecting
them to other typed nodes, inheritance of attributes defined as
links to other types, and a notion of concepts as type
definitions and instances as type instances [22] [23]. These
semantic graphs were called is-a hierarchies because they
modelled concepts starting from very general (e.g., Animal)
progressing to more specific (e.g., Dog) and with the leaf
nodes of the graph as instances of concepts. E.g., Dog is-a
Animal and Fido is-a Dog.

The definition of certain types of links in a semantic network
to represent specific kinds of knowledge such as is-a was
described by Ron Brachman as the epistemological layer for
a semantic network [24].

This led to a new model for knowledge representation
organized around is-a hierarchies first called Schemas by
researchers such as Don Norman and David Rumelhart.[25]
[26] and later called Scripts and Frames by researchers such as
Roger Schank [27].

2.5 Objects and Frames

One of the next advances in industrial use of AI was to
integrate Frame research with the rule-based inferencing of
expert systems. Much of the inferencing in expert systems
that was represented as rules could be modeled as
classification of a node into a Frame hierarchy. For example,
determining the diagnosis for a disease could be viewed as
finding the appropriate position for a Diagnosis instance in an
is-a graph starting from very general concepts such as
BloodDisease and navigating to specific concepts such as
SickleCellAnemia.

The data that was queried and set in rules were typically no
longer simply variables but rather slots on frames. The data
stored in frame languages was described as an ontology.
Eventually, virtually all of the expert system shell vendors
included some capability to define Frame hierarchies in
addition to rules.

At the same time Object-Oriented Programming (OOP)
languages such as Smalltalk were beginning to be used in
industry [28].

The distinction between frame-based languages and OOP is
full of ambiguity. Message-passing was incorporated in
several frame-based languages, such as the Knowledge
Engineering Environment (KEE), [29] and in OOP languages
such as Smalltalk. There was a large amount of cross
pollination between the two communities in both academia
and industry, facilitated by common roots to MIT’s AI Lab

and Xerox PARC. Mark Stefik, one such bridge, brought his
work on OOP in Common LISP to Smalltalk [30].

Object-oriented programmers were more influenced by
software engineering. Object-oriented programming was
essentially a natural extension of the theory of abstract data
types and the design goal of encapsulation [31]. Frame-based
systems were focused on AI research, embracing a wide array
of various techniques for different domains and problems.
Frame systems thus tended to be much more eclectic and
diverse. Some of the capabilities of frame systems included:

1. Facets on slots. Slots were the equivalent of
properties in OOP. However, unlike those languages
a slot could also have additional information stored
on it. For example, when was the slot last accessed,
who accessed it, a certainty value representing how
certain the reasoning was that resulted in the value of
the slot, etc. This additional information was stored
on a data structure known as a facet. Each slot could
have as many facets associated with it as the designer
required. This allowed slots with facets to essentially
be n-ary relations rather than just binary. For
example, hasEmployer could be a ternary relation
between an Employee, the Employer and the
startDate when they were first employed. This
capability is very similar to property graphs and
RDF*. This and other Semantic Web analogs of
Frame language capabilities will be discussed below
in sections 5-7.

2. Default values. A default value for each slot could
be defined, either as a facet or as a separate feature.
When a new instance of a class was created, any slot
with a default value would automatically be filled
with that value. Default values were usually
inheritable. E.g., if the default value for hasCovering
on Mammal was Fur then all subclasses of Mammal
such as Dog would inherit that default value unless it
was over-ridden in the same way as methods can be
over-ridden by new sub-classes.

3. Triggers. Triggers could be defined for slots. This
was code that would be executed whenever a value
was put and/or retrieved from the slot.

4. Constraints. Slots could include various data
integrity constraints such as the maximum or
minimum values required for the slot, the datatype, a
range of legal numeric values, etc. In Frame
languages there was no distinction between using
constraints for reasoning and using them to validate
data integrity.

5. Strong rule integration. Frame systems often had a
strong integration with rule-based inference engines.
Not only could they invoke a rule base to infer over
an ontology, they could also include capabilities such
as truth maintenance (when a fact changed that
would impact information inferred by rules the rules
would automatically be re-invoked), possible worlds
(the ability to create different versions of an ontology
based on alternative assumptions), and explanation
engines (the ability to explain how a certain value
was inferred using the trace of rules that fired).

Knowledge Representation and the Semantic Web: An Historical Overview Journal Name, 2019, Vol. 0, No. 0 5

Although Frame languages haven’t died out completely, OOP
is now the dominant paradigm. In industrial software
development OOP has moved from a leading-edge technology
to a best practice followed by most IT organizations for new
software development projects with mainstream languages
such as Java and Python. Although frame languages are still
used in academia, even there they have mostly given way to
OOP.

OOP came to dominate because of elegance and simplicity,
coupled with a larger support base due to interest outside AI.
Features 2-4 in the list of Frame capabilities can be achieved
by the use of constructor, get, and set methods, a standard
practice of OOP [32]. A constructor is a method used to create
a new instance of a class. Among other things, it can set
default values for properties. A get or set method can check
constraints or trigger arbitrary code every time a property is
accessed or set [33].

Facets can be implemented in OOP via a design pattern that
creates a new class that stores the information that would be
stored in facets. For example, the ternary relation
hasEmployer cited above could be implemented in OOP by
creating a new class called Employment with properties
hasEmployer and startDate. The result would be that the
property on the Employee class would be hasEmployment
with its range being the Employment class.

When designing large systems, the simplicity of OOP made
collaboration between different developers and re-use of code
simpler. The diverse capabilities of Frame languages meant
that different developers would choose different approaches
to implement the same functionality and would make the code
of one developer different than that of another. By limiting the
options of the language to methods OOP made code more
uniform and hence more maintainable and reusable [33].

In addition, OOP enabled encapsulation. Because the data of
a class was only available via get and set methods, the
implementation details of the class could be hidden from
developers that re-used it. Thus, the implementation could be
changed and as long as the public interfaces (methods) didn’t
change, the code of those who reused the class would still
work. A classic example is a Dictionary class might store its
elements at first using an array and then later convert to a hash
table for better performance. Encapsulation means that the
code that reuses the Dictionary class won’t need to be
modified because the implementation detail of using an array
or hash table will be hidden from the objects that use the class
[33].

2.6 Formalist (Neat) vs. Heuristic (Scruffy) Thinking

In parallel with these technical developments, researchers
began noting two loose and not cleanly differentiated
philosophical approaches. These had many names, but
common underlying themes. One theme contrasted starting
points: tackling AI challenges and asking what
representations helped vs. starting with a representation and
exploring extensions and uses. This closely correlated with
focus on demonstrating a capability vs. concern for
decidability, performance, and confidence in outcomes. This

3 Personal communication between Michael DeBellis and
Schuyler Laparle, graduate student in Linguistics at UC
Berkeley.

correlated with lesser or greater concern with the ability to
analyze and predict behavior and performance of the tools
used. Fuzzy as these distinctions were, they are worth
understanding because of implications they still hold for
current and future systems.

Within the Frame community, the two different approaches
were labelled by Roger Schank as “Scruffies” vs. “Neats”.
The Neats were researchers such as John McCarthy and Ron
Brachman who wanted to start from a principled (formal)
framework and ask what could be accomplished within it. The
Scruffies were people such as Schank who took a more
bottom-up approach and utilized whatever technology they
thought was most appropriate for their specific problem.

These attempts to differentiate into schools of thought were
not well-defined. Very influential researchers, e.g., Herb
Simon, bridged them. Simon appreciated the power of formal
tools, but he also took a very pragmatic approach and
advocated that the principles governing intelligent systems
were best studied by trying to build them and learning from
what did and didn’t work [34].

Similar distinctions arose in the Linguistics community under
the rubric of “west coast” vs. “east coast”. West coast
linguists were influenced by people such as George Lakoff at
the University of California at Berkeley.3 Lakoff’s students
study semantic concepts such as metaphor and are
significantly influenced by research in cognitive science such
as Ellen Rosche’s experiments that demonstrate how human
concepts don’t always conform to formal set theory [35]. There
was a significant amount of overlap between the Scruffy
approach to AI and the West Coast approach to Linguistics.
For example, in his book, “Women, Fire, and Dangerous
Things,” Lakoff goes into significant detail about the concept
of Frames and Roger Schank’s work [36].

The east coast linguists were most influenced by Noam
Chomsky at MIT. . Chomsky extended Turing and Church’s
computational theory work by defining a hierarchy of
mathematical computation models from the most simple
(Finite State Machines) to the most complex (Turing
Machines), along with the kind of languages that they could
parse. E.g., Finite State Machines can only parse context free
languages. Recursively enumerable languages such as all
human natural languages require a Turing Machine. In
addition to linguistics, Chomsky's language hierarchy had
significant impact on computer science such as compiler
design [37].

Chomsky and his students use logic and set theory models
such as X-bar theory to explore mathematical models for the
syntax rules of human languages. Chomsky's current work
hypothesizes that ultimately all language transformations can
be decomposed into basic set formation capabilities: adding
an element to a set or taking the union of two sets [38].

Returning to AI, some of the leaders in addition to Schank
closer to the “Scruffy” mindset were Norman, and Rumelhart
[39]. They defined Frames (also called Scripts) as a way to
partially explain human language processing. The core idea
was that part of understanding human language were high

Knowledge Representation and the Semantic Web: An Historical Overview Journal Name, 2019, Vol. 0, No. 0 6

level concepts that set expectations. Computationally, this
was a way to prune the huge search space of possible parsing
options for any sentence. For example, when a person enters
a restaurant, they invoke the restaurant script. This is a frame
with various slots such as server, menu, meal, etc. This frame
is used to guide the parsing of sentences within that context.

On the more formal side, Ronald Brachman was one of the
people whose research contributed substantially to what
would become OWL. In work that began with his 1977 Ph.D.
thesis, Brachman extended semantic networks into the first
formal Frame language called KL-One. KL-One had an
automated reasoner called a classifier. An issue with Scruffy
frame languages and OOP languages is that while there are
guidelines as to what it means for one class to be a subclass of
another, these guidelines are only defined in documentation.
They are not formalized in the language itself. KL-One was
the first language to change this. In previous languages the
user manually defines a hierarchy of classes from general to
more specific and then finally to the leaf nodes which are
instances. In KL-One the user defines a set of axioms (logical
statements) and the classifier automatically defines the class
hierarchy and other aspects of the ontology that would
normally be defined manually. The classifier is a type of
automated theorem prover. Similar to inference engines for
rule-based systems, classifiers reason over a subset of FOL.
However, the classifiers were able to cover a larger (hence
more expressive) subset of FOL than rule-based inference
engines because the language was not restricted to if-then
rules.

2.7. Description Logic

Brachman found that the range of expressivity in KL-One was
too great for practical use. This led to research by Brachman
and others into the theoretical foundations for formal Frame
languages, and consequent definition of Description Logic.
Recall that Turing and Church proved that First Order Logic
(FOL) was undecidable. The primary goals of Description
Logic research were:

1. Find the maximal subset of FOL that was still
decidable.

2. Formally describe the various levels of complexity
that Frame language could have and the implications
each level had on the performance of the reasoner
[40].

As will be seen below, Brachman’s approach is currently
ascendant. Nevertheless, considerations raised in the
preceding section linger. Note that virtually all common
programming (e.g., Java, Python, Lisp) and query languages
(e.g., SQL) are not decidable -- almost all programmers have
accidentally written code with infinite loops. Researchers
such as John Sowa have pointed to this to argue that what
really matters is having a maximally expressive language that
allows developers to define knowledge in the most powerful
and intuitive format [41]. This opinion is not restricted to
Sowa. For example, in a workshop on Term Subsumption
languages (the technical name for languages such as KL-One
and Loom) the question of decidability was a frequent topic
of discussion [42]. In the real world, decidability is not the

4 Email communication Martin O'Connor to Michael
DeBellis.

ultimate issue, performance is. A language that is decidable
but takes a decade to return a solution is useless.4 On the other
hand, some languages such as SPARQL are potentially
undecidable but good implementations (e.g., the SPARQL
implementation in AllegroGraph) provide warnings to
developers when queries are at risk of causing excessive time
or infinite loops [43]. OWL itself includes a profile (OWL 2
RDF Semantics, previously OWL Full) that is not decidable
[44]. OWL Full is avoided by virtually all Semantic Web
developers and the emphasis in the community at this point in
time is clearly on decidability. Whether the pendulum will
swing back is unknown, but history suggests the possibility.

3. Building AI Systems at Scale: Very Large Ontologies

The next phase of AI research in knowledge representation
was to a great extent driven by the problem of how to build,
manage, and use very large ontologies. Up to this point,
research tended to be confined to individual problem domains
such as diagnosing diseases. The goal of managing large
ontologies was primarily driven by three requirements to scale
AI to larger problems:

1. The need to solve the problem of common sense
reasoning.

2. The success of OOP and the resulting emphasis on
building systems via re-using predefined
components as opposed to developing custom
software from scratch.

3. Combining structured (machine readable) and
unstructured (human readable) information in an
integrated representation and reasoning
environment.

Common sense reasoning has been and still is one of the most
critical unsolved problems of AI [45]. In the pop science press
it is common to hear people discuss “General AI”. Most AI
researchers think that General AI will, at a minimum, require
addressing Common Sense reasoning. I.e., in any typical
human conversation there are countless examples where in
order to understand a sentence the listener must apply
common sense knowledge that even children simply take for
granted. Facts such as that things fall down and not up, that
fire is hot, that water is wet, etc. While humans take this for
granted, AI researchers have found it to be a very difficult
problem.

Issue 2 was due to the fact that the business world and US
Department of Defense both experienced great benefits from
the use of OOP. However, one of the promises of OOP, that
systems could be composed from reusable components, while
significantly aided by OOP languages still failed to be
completely realized due to problems related to finding and re-
using software components. It was thought that techniques
from knowledge representation might help to address these
problems and finally realize the goal of software construction
via composition rather than duplicative development.

Issue 3 was a result of an evolution in the understanding of
how AI could best work in the real world. One of the lessons
learned from Expert Systems was that standalone systems that
simply took in input and provided answers had limitations.

Knowledge Representation and the Semantic Web: An Historical Overview Journal Name, 2019, Vol. 0, No. 0 7

Most humans were reticent to blindly turn over decision
making to computers [46]. Users have much more trust and
desire to utilize systems that are interactive and can explain
their reasoning [47]. Another driver for 3 was the wide-spread
adoption of knowledge management systems such as Lotus
Notes through many US corporations. These systems
demonstrated that there was a market for systems that could
represent and reason over structured and unstructured
knowledge. Also, the growing realization of the major impact
that the Internet was having on reshaping modern culture and
business was a key driver to the requirement for systems that
could represent and manage both machine and human
readable knowledge.

Tom Malone was among the first to attempt to bridge
structured knowledge representations and unstructured data,
as part of an intelligent email system that supported frames
and allowed rules about structured elements but allowed slots
to be filled with either structured elements or free text [48].
Neches’ research group tried to take this further, attempting to
build a human-in-the-loop reasoner that would seek assistance
to put it back on track when a typed slot was filled with
untyped data [49] [50].

There were two major efforts in the US focused on these
issues. The Cyc system focused on common sense reasoning.
The DARPA Knowledge Sharing Initiative focused on
reusable components and structured/unstructured knowledge.
Table 1 summarizes the different approaches of these two
programs which will be described next in sections 3.1 and 3.2.

Research Focus and
Approach

Research Program

 Cyc Knowledge Sharing
Initiative (KSI}

Very large ontologies ✓ ✓

Common Sense Reasoning ✓

Assembling Systems from
Reusable Modules

 ✓

Structured and
unstructured knowledge

 ✓

Model Integration Common
Upper
Model

Distributed Agents &
Ontology Mapping

Architecture Tightly
Coupled

Loosely Coupled

Table 1. Summary of Cyc and KSI Approaches

3.1 Cyc: Representing Common Sense Knowledge

Cyc was a system initially developed at the Microelectronics
Computer Consortium (MCC) in Austin Texas. MCC was put
together as a reaction to a similar large program called the
Fifth Generation project out of Japan where major technology
companies decided to pool their investments in AI research in
order to spur new business applications. MCC had investment
from IBM. Dell Computer, Sun Microsystems, Motorola, and
many others [51].

Cyc was led by Doug Lenat (a former student of Feigenbaum)
and was an attempt to develop a very large collection of
ontologies to represent common sense and encyclopedic

knowledge. The Cyc project created their own Frame based
language and inference engine, as well as tools to enter
information into their ontologies [52].

The Cyc project was the largest and most ambitious effort to
address representing common sense knowledge. They had a
large number of developers as well as content creators whose
main job was to create entries for both common sense and
encyclopedic knowledge.

The approach used for the Cyc environment was to tightly
couple all the various component tools. I.e., each tool was
designed specifically for Cyc and with little regard for how to
separate the tool out to be used independently or to replace
one component with an alternative. The advantage of tight
coupling is that it often allows more features and better
performance than loose coupling. The disadvantage is that it
is an “all or nothing” approach. It is difficult to take one tool
from the suite of tools and use it on its own and is also difficult
to swap out one tool with another (e.g., a commercial
product).

3.2 The DARPA Knowledge Sharing Initiative

Starting more or less at the same time as Cyc was another
project to deal with large ontologies. This project was
sponsored by the US Defense Advanced Research Projects
Agency (DARPA) and was called the Knowledge Sharing
Initiative [53].

Whereas Cyc was driven by the goal of representing common
sense reasoning the knowledge sharing initiative was driven
by the goal of facilitating reuse of software and knowledge.
Consequently, the Knowledge Sharing Initiative took a
diametrically opposite approach to their architecture as Cyc.
Whereas Cyc was tightly coupled, the Knowledge Sharing
Initiative was loosely coupled. Tools were developed for
different aspects of the problem in a manner such that they
could both be used independently from the project and so that
they defined interface specifications that would facilitate
swapping out one tool and replacing it with another as long as
it implemented the appropriate interfaces. The Knowledge
Sharing initiative also had a requirement to facilitate agent-
based systems and supported a range of efforts to build
publicly shared ontologies. For a detailed comparison of the
two initiatives, see [54]. There were several tools that resulted
from the Knowledge Sharing Initiative that had significant
impacts on the Semantic Web. These included:

• KRSL. The Knowledge Representation Standard
Language was an attempt to get community support
for a knowledge representation language
specification. It did not lead to an implementation
and was subsumed by LOOM
[55] for practical applications but was influential in
thinking that fed into DAML. Loom was a frame-
based knowledge representation language that was
modeled after KL-One. It included a classifier that
could restructure the model as a result of inferences
about the axioms in the ontology [56]. These systems
are discussed below.

• KIF, the Knowledge Interchange Format
spearheaded by Mike Genesereth and Richard Fikes
[57] provided a basic knowledge representation
language rooted in FOL facilitating knowledge
exchange among various knowledge representation

Knowledge Representation and the Semantic Web: An Historical Overview Journal Name, 2019, Vol. 0, No. 0 8

systems such as Loom and KEE. KIF was not meant
to be a language for developers but rather for agents
and other systems transmitting knowledge encoded
in differing representation languages. The designers
of KIF described it as analogous to PostScript.
PostScript was not a language used by word
processors but a common interchange language so
that documents in Microsoft's RTF format, HTML,
etc. could have a common standard for sending
documents to printers.

• The Shared Ontology Working Group, led by Tom
Gruber [58], supported collaborations on topic-
specific ontologies, in stark contrast to the broad
“upper model” goals of Cyc.

• KQML, the Knowledge Query Manipulation
Language spearheaded by Tim Finin [59] was a
protocol for enabling agents to query and/or modify
ontologies and knowledge bases controlled by
external systems. Several of the same developers
worked on both KQML and SPARQL and KQML
significantly influenced the design of SPARQL.
SPARQL will be discussed in section 5.

3.3 Lessons Learned

Despite very different approaches, what both Cyc and the
Knowledge Sharing Initiative ultimately demonstrated is that
widespread adoption of any shared ontology is at best slow
and difficult. The fundamental problem is two-fold: inherent
complexity and engineering compromises.

The inherent complexity problem starts with the fact that the
world is complex and multi-faceted. Consequently, attempts
to model it in symbolic structures grow large.

An example of the difficulty of defining one comprehensive
upper model can be found in research funded by the DARPA
Knowledge Sharing Initiative and conducted by Jerry Hobbs
in the early '90s, first at SRI and later at USC/ISI. Hobbs' goal
was to develop a sharable ontology of time. Time is
fundamental to many applications. Issues as diverse as time-
stamping an email or scheduling the launch of satellite depend
upon it. The effort was regarded as simple. It was expected
to take weeks to months. It was dropped after several years.
It was simply too complicated to build an all-encompassing
model, in part because practical resolution depends on
context5. For example, consider modeling time ranges.
What should happen when, "I'm free from noon to 1:00 for an
hour meeting" meets, "Well, I'm free from 12:01 to 1:01"?
One might want those comparisons to be somewhat flexible.
Not so, however, if the time range in question is an orbital
launch window, where accepting even a multi-decimal
fraction of a second outside the range could lead to an
expensive disaster. But when one says 1:00 pm, do you mean
local or Greenwich? Does 1:00:00.001 pm match? How
about 1:00:00.000000001?

Considerations like these inevitably led to engineering
compromises driven by a range of considerations. Practical
applications necessitate decisions to do the best possible
within available time and budget, and/or doing no more than

5 Jerry Hobbs, personal communication to Robert Neches,
1997.

needed for intended uses. This has important implications for
the reusability of ontologies and directions for future work.

An immediate implication is that evaluating the reusability of
a particular ontology for a particular purpose is much easier if
one understands multiple factors. These include: the
context(s) of prior use, the context(s) of intended future use,
the underlying formal but highly philosophical thinking
behind modeling decisions, and the impacts of engineering
trade-offs taken upon the form of the models. Thus, both
inherent complexity and engineering considerations impact
sharing and reuse of ontological models.

A direct consequence of this is a problem analogous to code
re-use in traditional software engineering. There is a strong
force toward proliferation of duplicative and overlapping
alternatives. Little has changed here since these risks were
pointed out in 1993 (see [54]). The barrier cost of the
intellectual effort required for understanding, evaluating, and
adopting a pre-existing ontology creates a strong temptation
to simply build one's own from scratch. Another factor is the
strong (not entirely baseless) fear that re-use, being a close
neighbor to standardization, can both become a barrier to
innovation and a weapon of control over markets.

These concerns appear to be shared by major companies. It is
worth noting that Google, Microsoft, Yahoo and Yandex have
chosen to co-fund what is effectively a crowdsourced
community-driven ontology development [60] in a bottom-
up, grassroots fashion – much as advocated by graduates of
the DARPA Knowledge Sharing Initiative [61, 62, 63].

Code re-use has grown significantly, in part because software
engineering principles of modularity, encapsulation, and
interface specification have been absorbed. In coding, also,
the productivity benefits have been clearly shown to be too
significant to ignore. Reuse of ontological models will not
parallel that growth until some software engineering
principles are developed, and appropriate development
environments are provided.

These considerations define some important directions for
future work. We need to think very hard about ontology
development environments. The importance of capturing and
reasoning about design rationale has been long recognized in
other areas of design and engineering [64] [65]. Ontology
developers need to find ways to do the same.

A complementary alternative is to look more closely into
ontology mapping as a research and development direction.
Rather than trying to build all-encompassing models, this
direction would focus on tools that automatically or semi-
automatically try to identify equivalences and differences
between related ontologies in order to bridge between them.
This approach was first introduced by Gio Wiederhold [66] [67]
[68]. As ontologies transition from the lab to industry the
problem of ontology mapping has been the impetus for a
startup in Europe called Dynaccurate6 that has shown
significant time and money savings by automating the
mapping of various healthcare and defense ontologies [69].

A particularly innovative extension of this approach was
demonstrated by Baoshi Yan.[70] Yan built an end-user
oriented environment supporting "bottom-up ontology

6 https://www.dynaccurate.com/

https://www.dynaccurate.com/

Knowledge Representation and the Semantic Web: An Historical Overview Journal Name, 2019, Vol. 0, No. 0 9

alignment" in which users collecting documents picked up
semantic annotations associated with them. As users
organized those documents, Yan's tool helped them create
their own ontology in which to place them. At the same time,
it compared their personal ontology to the ones associated
with the documents' original semantic annotations. These
comparisons were used both to suggest mappings between
users' ontologies and others, and to suggest refinements to
users' personal ontologies.

One can imagine that, if tools like Yan's were in widespread
use, "grassroots ontologies" might emerge which gained
broad acceptance (or, at the very least, acceptance within
communities of like-minded collaborators). The process by
which they would emerge and evolve might go a long way
toward ensuring utility, as well, since they would be tested
through usage at every step.

There seems to be relatively little recent work picking up on
these threads. In the recent 2021 International Semantic Web
Conference, for example, only one out of 54 papers focused
on ontology translation [71], and one on ontology alignment
[72]. A smattering of others dealt with automated generation
of ontologies from less-structured sources. However, those,
although they do accelerate availability of ontologies, do not
address the challenges of understanding, re-using, extending,
or adapting them. It is very much time to get back to the
challenges of software engineering and development
environments supporting sharing and re-use. Without more
work on these topics, significant cost, productivity, and
maintenance barriers to widespread ontology adoption will
remain.

4. Internet Research: From Hypertext to Linked Data.

As these AI knowledge research initiatives were proceeding,
Internet researchers began developing new technologies to
add semantics to the Internet that significantly leveraged
them. Figure 2 shows the connections between various
research programs leading towards the standards that provide
the foundation for the Semantic Web known as Linked Data.

The first technology that addressed semantics was XML.
XML is a powerful meta-language that allows developers to
define domain specific tags and structure for their documents.
XML was the first and is still one of the most widely used
languages to go beyond simple hypertext and to add basic
semantics to HTML pages that could be accessed by bots for
better searches and to enable agent like systems that can

perform functions such as search for the lowest price for a
purchased item.

XML is a subset of the ISO 8879 Standardized General
Markup Language (SGML). SGML was designed for
document sharing within large organizations such as
governments and the military. XML is designed to be simpler
than SGML and with Internet documents as one of the most
important driving use cases [73].

XML provided basic semantics but is still oriented around the
concept of a document. The next step after XML was the
definition of the Meta-Content Framework (MCF). MCF was
originally a research project funded by Apple Computer and
was highly influenced by the Knowledge Representation
community, specifically Cyc, KRSL, and KIF. Unlike XML,
MCF had an object rather than a document focus. It described
objects with attributes and relations to other objects [74].

MCF was a main influence to the Resource Description
Framework (RDF). RDF is the foundation for the Semantic
Web. It has two primary datatypes: resources and literals. A
resource has a unique identifier that is an Internationalized
Resource Identifier (IRI). An IRI looks similar to a URL. In
fact, all URLs are IRIs. The difference is that a URL is
typically meant to be a document or some resource that is
designed to be viewed in a browser. An IRI can be any
resource such as a class, property, or instance. Every object in
an OWL ontology is a resource and hence has a unique IRI. A
literal is a simple datatype such as a string, integer, or date.
The fundamental representation scheme in RDF is the triple.
A triple has a Subject, a Predicate, and an Object. The subject
and predicate must be resources (IRIs). The object can be
either a resource or a literal. RDF results in network graphs
because the subject of one triple can be the object of another
and vice versa [75].

RDF is a basic semantic network language. The next step was
to add what Brachman defined as the epistemological layer to
RDF. The creation of nodes such as classes and predicates
such as properties and type. This layer is called the RDF
Schema language (RDFS). Note that although RDFS adds
basic meta-model concepts and links it does not support a
formal semantics such as Description Logic.

The graph structures of RDF/RDFS requires a query language
to traverse, retrieve, and modify information in the graph. This
language is SPARQL. SPARQL is a recursive acronym:
SPARQL RDF Query Language. SPARQL was influenced by
SQL in order to make it more accessible to the large
community of database developers. The two most important
differences between SPARQL and SQL are:

1. SPARQL can match (have a wildcard) for any or all
parts of a triple. A SPARQL query with wildcards
for all three parts of the triple will retrieve the entire
graph.

2. SPARQL has built-in capabilities to link to and
request data from any resources on the Internet.
Queries can match and retrieve data from many
different sources (e.g., DBpedia and Geonames)
even though those sources were designed
independently with neither system knowing about
the design of the other. This in effect gives every
SPARQL user a huge, distributed database of all

Figure 2. Research Leading to Linked Data

Knowledge Representation and the Semantic Web: An Historical Overview Journal Name, 2019, Vol. 0, No. 0 10

RDF data on the global Internet accessible from their
local client machine.

This concept of defining queries that match and retrieve data
from multiple heterogeneous sources on the Internet is known
as Linked Data [75].

5. Knowledge Representation Meets the Internet

This brings us to the most powerful semantic language in the
Semantic Web: The Web Ontology Language (OWL). Figure
3 shows a graph of the most important knowledge
representation languages and their relations to each other and
eventually to OWL.

 KL-One was a groundbreaking language, but it was too slow
for application to real problems. New Implementation of KL-
One (NIKL) was developed at USC/ISI and was an attempt to
develop a Description Logic (DL) language with similar
power as KL-One but with performance that could be applied
to real problems. It was followed by the Loom language also
developed at USC/ISI by a team led by Bob McGregor. Loom
was a very powerful language implemented in LISP. Later
versions were implemented on top of the Common LISP
Object System (CLOS) which gave it good performance and
portability. Loom was one of the first DL languages used to
develop applications that were utilized by actual users from
the Defense Logistics Agency and Aerospace and Defense
contractors taking part in the USC/ISI FAST project. The
FAST project was far ahead of its time, demonstrating
Business to Business (B2B) commerce at least a decade before
anyone in the commercial space had conceived of the idea
[50].

The Knowledge-Representation Standard Language (KRSL)
discussed above was part of the Knowledge Sharing initiative.
While it never resulted in an actual development language it
shaped the goals of the Knowledge Sharing initiative to
encourage knowledge re-use via interoperability and mapping
rather than by simply mandating use of one knowledge
representation language or shared model. Also, as discussed
in section 5, KRSL was one of the influences on the MCF
language which was a direct influence on RDF.

SHOE7 was a very innovative language developed at the
University of Maryland by Jim Hendler. It was one of the first

7 https://www.cs.umd.edu/projects/plus/SHOE/
8 https://www.w3.org/TR/owl2-overview/
9 As with modern databases (e.g., triggers) the distinction
between data and process is not clear cut. The Semantic Web
Rule Language (SWRL) provides the capability to
implement many types of business logic. However, it has

languages to attempt to directly add DL semantics to HTML
pages.

The Ontology Interchange Language (OIL) was a European
initiative that defined DL semantics on top of XML. The
DARPA Agent Markup Language (DAML) was part of the
Knowledge Sharing initiative and was the first attempt to add
DL semantics to RDF. The European researchers working on
OIL and the American researchers working on DAML soon
realized that their ultimate goals were very similar and pooled
their efforts to develop the DAML + OIL language which was
one of the most significant influences on the Web Ontology
Language (OWL).

The endpoint (at least so far) of this research was of course
OWL.8 OWL is built on RDFS and was standardized by the
W3C. OWL is supported by the Protégé ontology editor from
Stanford [76]. Protégé far exceeds the expectations for most
research tools. Its robustness, documentation, and support
from an active user community, equals many commercial
tools. It also continues to be a platform for innovation via
many plugins developed by researchers, which seamlessly
integrate with it and provide tools for SPARQL, SHACL, and
many other features. In addition to Protégé, OWL is also
supported in commercial offerings from vendors such as
Franz Inc., Ontotext, Pool Party, Stardog, and Top Quadrant.

The primary difference between OWL and languages such as
Loom is that in order to achieve scale up to what is known in
industry as "big data" OWL focuses only on representing the
data of a model. Languages such as Loom and KEE could
model hierarchies of classes and also include features such as
message passing to implement process. They were self-
contained tools that could be used to build entire applications.
That is not the case with OWL. OWL only models data.9 To
implement process developers must utilize APIs to
programming languages such as Java, Python, and Lisp. For
examples and more detail on OWL and other Semantic Web
standards we recommend the book [77]. For a hands-on
tutorial on Protégé and several of the most important plugins
see [78].

6. Shapes Constraint Language (SHACL)

The newest Semantic Web standard is the Shapes Constraint
Language (SHACL). The original vision of the Semantic Web
was to provide a semantic layer for the public Internet. There
has been success with this in open crowd sourced knowledge
graphs10 such as DBpedia, Wikidata, and Geonames.
However, the technology is also having significant impact
behind corporate firewalls, and this has created a requirement
for a new language focused on data integrity constraints.
SHACL seeks to address that need and is gaining great
traction as one of the most significant Semantic Web
standards for use in Industry [79].

SHACL and OWL seem similar at a first glance. Any axiom
that can be defined in OWL can be defined in SHACL and
almost any constraint that can be defined in SHACL can be

limitations and for any real application a programming
language must be integrated with OWL.
10 In industry knowledge graph is the more popular term and
in academia ontology is. Although there are some subtle
differences, for the purposes of this paper, we will treat them
as synonyms.

Figure 3. Research Leading toward OWL

https://www.cs.umd.edu/projects/plus/SHOE/
https://www.w3.org/TR/owl2-overview/

Knowledge Representation and the Semantic Web: An Historical Overview Journal Name, 2019, Vol. 0, No. 0 11

defined in OWL. The difference isn’t what can be defined,
but rather how the logic is utilized.

OWL ontologies are meant for reasoning on valid data. For
example, if the range for a property is defined as the class
Person, and an instance of the class ElectronicPart is entered
as the value of that property, the OWL reasoner won’t trigger
an error but will instead wrongly infer that the ElectronicPart
is also an instance of Person. If the two classes are defined as
disjoint in OWL (i.e., their intersection is the empty set), the
OWL reasoner will trigger an error but in so doing will make
the ontology inconsistent and unable to utilize any inferences
until the inconsistency is resolved.

Also, the OWL reasoner adopts the Open World Assumption
(OWA). This is arguably essential for use with the public
Internet. Its design rationale is that no ontology could
encompass all the data on the Internet. Thus, if a value for a
particular property is missing, the reasoner shouldn’t infer that
there is no such value (as systems built upon the far more
common Closed World Assumption would). The OWA
means that the reasoner won’t trigger errors for certain kinds
of axioms that require a minimum number of values for a
property. It assumes that such values could exist somewhere
in the Internet but just haven’t been found yet.

The considerations that make OWL work for the public
Internet, don’t work for systems behind corporate firewalls.
Data integrity constraints are essential for enterprise data. If
each customer must have an email address in their account,
there must be a way to alert the enterprise that something is
wrong if an email is not defined for a customer.

These concerns are what drove the creation of SHACL.
SHACL uses the Closed World Assumption rather than the
OWA. It will signal errors if there is a constraint that requires
a minimum number of values for a property and the proper
number of values are not currently in the knowledge graph.
Also, SHACL does not make the entire knowledge graph
inconsistent when a data integrity violation is found. SHACL
provides the developer with the option to define various kinds
of errors as well as with the option to define code that may
attempt to repair certain types of data integrity violations. E.g.,
if a data property has a range of integer and the string “1” is a
value for some individual, SHACL can attempt to coerce the
string into an integer datatype.

In relation to knowledge representation, SHACL brings back
some of the capabilities of the original Frame languages such
as constraint checking and default values.

7. Current & Future Developments

As often happens in research, the original vision of the
researchers tends to evolve as concepts transition from the lab to
industry. The initial vision of the Semantic Web was focused
primarily on providing a semantic layer for the public Internet.
There have been great achievements toward this goal with Linked
Data. However, the technology only began to achieve significant
recognition in industry when Google coined the term “knowledge
graph” [80] and began to discuss their knowledge graph project,
which they use to provide direct answers rather than just links in
response to queries. Google’s trail blazing created a flood of
interest as technology leaders such as Facebook, LinkedIn,
Amazon, and others began creating knowledge graph projects
behind their firewalls to better understand, control, and utilize
their data [81].

The technology is still in its infancy in terms of industry use. The
opportunities, as well as the challenges, are enormous. Along
with research issues touched upon in Section 4.3, some of the
most important of these are:

1. Privacy. Knowledge graphs and visualization tools
make explicit information that is left implicit in
documents. An example of this is the CODO project
[82], which created a knowledge graph for information
about the Covid-19 pandemic in India. The information
that the researchers used was all from publicly available
spreadsheets published on the Internet. However, when
certain information (e.g., tracing paths of infection from
one patient to another) that was implicit in the
spreadsheets became explicit in the knowledge graph,
owners of the data became deeply concerned and
stopped releasing their data.

2. Alternatives to W3C Standards. It is inevitable that
there will always be deviations from most standards.
Vendors want to include new features that differentiate
their products, and specific use cases can encourage
alternative techniques from the accepted standards.
This is currently happening with Semantic Web
standards. Property graphs are a competitor to
RDF/RDFS. There is currently no accepted standard for
property graphs, it is a term used for various
implementations of the concept. The main difference
between property graphs and RDF is that the links
(properties) in a property graph can also have attributes.
I.e., property graphs provide a capability similar to
facets on slots in Frame languages. There are also
alternatives to SPARQL that are designed to query
property graphs rather than RDF. One of the most
popular is the Cypher query language from Neo4J [83].
Another alternative to the current W3C Semantic Web
stack is RDF* which is being proposed as a W3C
standard. It essentially provides similar features as
property graphs but built on top of RDF. However, it
would not be compatible with OWL or the current
implementation of SPARQL. Several knowledge graph
vendors that adhere to W3C standards such as Franz
Inc. also provide proprietary extensions that enable the
same capabilities as property graphs.

3. OWL and Big Data. Most of the large, frequently used
knowledge graph implementations to date have utilized
RDF/RDFS or Property Graphs. One reason is that
OWL is newer than RDF. Many large projects such as
DBpedia began in RDF and continued to use that
technology. In addition, there remains skepticism
among many in industry as to whether the OWL
reasoner can scale to very large data. However, as Jim
Hendler points out in his presentation "Whither OWL"
[84] it may be that only subsets of OWL can provide the
performance needed for Big Data, but those subsets
may be enough for most use cases. This is supported by
the fact that many of the current vendors of triplestore

Knowledge Representation and the Semantic Web: An Historical Overview Journal Name, 2019, Vol. 0, No. 0 12

products11 such as AllegroGraph from Franz Inc.
support a large but not complete subset of OWL and
achieve very fast performance for very large knowledge
graphs [85].

4. Development environments for building, finding,
and re-using ontologies. Excellent tools such as the
Protégé ontology editor from Stanford are robust and
widely used. Nevertheless, as discussed in section 4.3,
the problem of defining modular ontologies, mapping
between ontologies, and capturing information about
the context and design decisions behind an ontology
still exist only in the lab. Achieving the same level of
knowledge re-use as the software engineering
community has in code re-use will require significant
effort. E.g., consider sophisticated automated OOP
build and testing tools such as Apache Ant and Maven.
Nothing comparable (in terms of scale and robustness)
currently exist for Semantic Web technology.

5. Automation of Knowledge Graph Creation and
Maintenance. Crowd sourced Linked Data assets such
as DBpedia are enormous. DBpedia has approximately
20 billion RDF triples.[86] Manually creating and
maintaining resources that large is a daunting task. One
of the most interesting areas of research is the use of
techniques such as machine learning to develop,
review, maintain, and extend large knowledge graphs
[87].

Knowledge representation techniques that date to the very
beginning of the field are only now coming to fruition in a way
that makes them practical for large scale usage on the Internet and
industry. The future potential is enormous. It will yield whole
new ways of leveraging data to enhance human knowledge and
understanding. Given the challenges we face as a world
community, it will be a resource that is sorely needed.

CONFLICT OF INTEREST

 Michael DeBellis is an independent consultant and
researcher. He is on the board of directors for Dynaccurate, a
company mentioned in the paper but otherwise has no other
potential conflicts of interest. Robert Neches is on the board
of the Innovation Infrastructure Utility, LLC. He is otherwise
retired and has no conflicts of interest.

ACKNOWLEDGEMENTS

 Jim Hendler provided extremely useful resources and
guidance on the history of the Semantic Web. Chunka Mui
provided valuable help related to work done by Accenture's
AI group. Doug Robbins provided invaluable assistance
helping us deal with formatting and graphics issues. Thanks
to the members of the Ontolog Forum:
https://groups.google.com/g/ontolog-forum especially John
Sowa for insight and feedback on several issues.

REFERENCES

1. T. Berners-Lee, J. Hendler and O. Lassila, "The Semantic
Web: A new form of Web content that is meaningful to
computers will unleash a revolution of new possibilities".
Scientific American. Vol. 284, Issue 5. May 2001.
2. J. Hendler and D. L. McGuinness, “The DARPA Agent
Markup Ontology Language”, IEEE Intelligent Systems,
Vol. 15, No. 6, November/December 2000.
3. A.M. Turing, “On Computable Numbers, with an
Application to the Entscheidungsproblem”, Proceedings of
the London Mathematical Society, Series 2, Vol 42, pp. 230–
265, 1936–37.
4. A. Church, “An Unsolvable Problem of Elementary
Number Theory”, American Journal of Mathematics, Vol.
58,pp. 345–363. 1936.
5. J. McCarthy "LISP prehistory - Summer 1956 through
Summer 1958." In History of Lisp, 1979.
6. S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, 3rd Edition. p. 274. Prentice Hall Series in
Artificial Intelligence, 2010.
7. H. Levesque and R. Brachman, "A Fundamental Tradeoff
In Knowledge Representation and Reasoning", In Readings

11 A triplestore is a database that natively stores information
as triples rather than in tables as a relational database does.

in Knowledge Representation, R. Brachman and H. J.
Levesque, Ed. Morgan Kaufmann. 1985.
8. A. Newell, J.C. Shaw and H.A. Simon, "Report on a
general problem-solving program", Proceedings of the
International Conference on Information Processing, pp.
256–264, 1959.
9. F. Hayes-Roth, D. A. Waterman, and D. B. Lenat,
Building Expert Systems. Addison-Wesley, 1983.
Hayes-Roth, Frederick. Building Expert Systems. 1983.
10. H. A. Simon and E. A. Feigenbaum, “An information-
processing theory of some effects of similarity,
familiarization, and meaningfulness in verbal learning.”
Journal of Verbal Learning and Verbal Behavior, vol. 3, no.
5, pp. 385-396, 1964, doi: 10.1016/s0022-5371(64)80007-4.
11. D. T. Connors, “Software development methodologies
and traditional and modern information systems.” ACM
SIGSOFT Software Engineering Notes, vol. 17, no. 2, pp.
43-49, 1992, doi: 10.1145/130840.130843.
12. B. W. Boehm, “A spiral model of software development
and enhancement.” Computer, vol. 21, no. 5, pp. 61-72,
1988, doi: 10.1109/2.59.

https://groups.google.com/g/ontolog-forum

Knowledge Representation and the Semantic Web: An Historical Overview Journal Name, 2019, Vol. 0, No. 0 13

13. K. Beck and C. Andres, Extreme Programming
Explained. Addison-Wesley Professional, 2004.
14 B. Dickson, "What is the AI Winter?", [Online] Available
From: https://bdtechtalks.com/2018/11/12/artificial-
intelligence-winter-history/ [Acessed Feb. 9, 2022].
15. SAP Help Portal, "SAP Rule Engine", [Online] Available
From:
https://help.sap.com/viewer/9d346683b0084da2938be8a285
c0c27a/2011/en-
US/e30ec2e429e84d22b9045b84c366ab76.html [Acessed
Feb. 9, 2022].
16. Oracle Docs, "About Seibel Business Rules Benefits",
[Online] Available From:
https://docs.oracle.com/cd/B40099_02/books/BusRulesAdm/
BusRulesAdm_About2.html [Acessed Feb. 9, 2022].
17. Tibco White Paper, "Event Processing with Inference
Rules", [Online] Available From:
https://www.tibco.com/sites/tibco/files/resources/wp-event-
processing-inference-rules_0.pdf [Acessed Nov. 17, 2021].
18. IBM Operational Decision Manager documentation,
"Business rule applications based on COBOL for z/OS
platformsS", [Online] Available From:
https://www.ibm.com/docs/en/odm/8.0.1?topic=development
-business-rule-applications-based-cobol-zos-platforms
[Acessed Feb. 9, 2022].
19. E. Friedman-Hill, Jess in Action. Manning Publications
Company, 2003.
20. SFGATE, "Europe's SAP Buys 14% Stake In
IntelliCorp", Aug. 10, 1996. [Online] Available From:
https://www.sfgate.com/business/article/Europe-s-SAP-
Buys-14-Stake-In-IntelliCorp-2970378.php [Acessed Nov.
17, 2021].
21. M.R. Quillian, “Semantic Memory.” Report AFCRL-66-
189, Bolt, Beranek, and Newman, 1966.
22. D. E. Rumelhart, P. H. Lindsay and D.A. Norman, "A
process model for long-term memory", In Organization of
Memory, E. Tulving and W. Donaldson Eds., New York:
Academic Press, 1972.
23. Rumelhart, D. E., & Norman, D. A. (1973). Active
semantic networks as a model of human memory.
Proceedings of the Third International Joint Conference on
Artificial Intelligence. Stanford, CA, 450-457.
24. R. Brachman, "On the Epistemological Status of Semantic
Networks", In Readings in Knowledge Representation, R.
Brachman and H. J. Levesque, Eds. Morgan Kaufmann,
1985.
25. D.A. Norman and D. E. Rumelhart, Explorations in
Cognition, San Francisco: Freeman, 1975.
26. D. E. Rumelhart and D.A. Norman, "Analogical
Processes in Learning". In Cognitive Skills and Their
Acquisition, J.R. Anderson, Ed. Hillsdale, NJ: Erlbaum,
1981..
27. R. C. Schank and R. P. Abelson, Scripts, Plans, Goals,
and Understanding. Psychology Press, 2013.
28. L. Bass and R. Kazman, "Object-Oriented Development
at Brooklyn Union Gas", IEEE SoftwareVol. 10, Issue 1
January 1993, pp. 67–74.
29. J.-P. Laurent, J. Ayel, F. Thome, and D. Ziebelin,
“Comparative Evaluation of Three Expert System

Development Tools: Kee, Knowledge Craft, Art,” The
Knowledge Engineering Review, vol. 1, no. 4, pp. 18–29,
1984.
30. M. Stefik, D.G. Bobrow, Object-oriented programming:
Themes and Variations. AI Magazine 6:4, pp. 40-62, Winter
1986.
31. D. Kafura, "Object-Oriented Programming and Software
Engineering", [Online] Available From:
https://people.cs.vt.edu/kafura/cs2704/oop.swe.html
[Acessed Feb. 9, 2022].
32. D. Terletskyi, “Inheritance in Object-Oriented Knowledge
Representation.” Communications in Computer and
Information Science, pp. 293-305, 2015.
33. B. Meyer, Object-oriented Software Construction.
Prentice Hall, 1997.
34. H.A. Simon, Herbert A. 1996. The Sciences of the
Artificial (3rd ed.). Cambridge, MA: MIT Press, 1996.
35. E. H. Rosch, "Natural Categories", Cognitive
Psychology, Vol. 4 (3), pp. 328–350, May 1973.
36. G. Lakoff, Women, Fire, and Dangerous Things.
University of Chicago Press, 2008.
37. J. E. Hopcroft, R. Motwani, and J. D. Ullman,
Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 2007.
38. Chomsky, Noam. The Minimalist Program. The MIT
Press; 20th Anniversary ed. edition (December 19, 2014).
ISBN-13: 978-0262527347.
39. Eisenstadt, Marc (1979) Schank/Riesbeck vs.
Norman/Rumelhart: What’s the Difference? 17th Annual
Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, pp 15-16
40. F. Baader, D. Calvanese, D. McGuinness, P. Patel-
Schneider, and D. Nardi, The Description Logic Handbook.
Cambridge University Press, 2003.
41. J. Sowa. "Fads and Fantasies about Logic", IEEE
Intelligent Systems, 22:2, pp. 84-87, March 2007.
42. R. Fikes and T. Garvey, “ Term Subsumption Languages
in Knowledge Representation” AI Magazine, vol. 11, no. 2,
1990.
43. Franz Inc. SPARQL Execution Warnings, [Online]
Available From:
https://franz.com/agraph/support/documentation/current/spar
ql-reference.html#query-warnings [Acessed Feb. 10, 2022].
44 W3C Recommendation, OWL 2 Web Ontology Language
Profiles (Second Edition), [Online] Available From:
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
[Acessed Feb. 8, 2022].
45. J.F. Allen and D.J. Litman, "Discourse Processing and
Common sense Plans." In Intentions and Communication,
P.R. Cohen, J. Morgan, and M. Pollack, Eds. MIT Press,
1990.
46. G. Fischer, "Symbiotic, Knowledge-Based Computer
Support Systems" In Proceedings of the Conference on
Analysis, Design and Evaluation of Man-Machine Systems,
Pergamon Press, Baden-Baden, pp. 351-358, 1982.
47. R. Neches, W.R. Swartout and J.D. Moore, "Explainable
(and Maintainable) Expert Systems", Proceedings of the
Ninth International Joint Conference on Artificial

https://bdtechtalks.com/2018/11/12/artificial-intelligence-winter-history/
https://bdtechtalks.com/2018/11/12/artificial-intelligence-winter-history/
https://help.sap.com/viewer/9d346683b0084da2938be8a285c0c27a/2011/en-US/e30ec2e429e84d22b9045b84c366ab76.html
https://help.sap.com/viewer/9d346683b0084da2938be8a285c0c27a/2011/en-US/e30ec2e429e84d22b9045b84c366ab76.html
https://help.sap.com/viewer/9d346683b0084da2938be8a285c0c27a/2011/en-US/e30ec2e429e84d22b9045b84c366ab76.html
https://docs.oracle.com/cd/B40099_02/books/BusRulesAdm/BusRulesAdm_About2.html
https://docs.oracle.com/cd/B40099_02/books/BusRulesAdm/BusRulesAdm_About2.html
https://www.ibm.com/docs/en/odm/8.0.1?topic=development-business-rule-applications-based-cobol-zos-platforms
https://www.ibm.com/docs/en/odm/8.0.1?topic=development-business-rule-applications-based-cobol-zos-platforms
https://people.cs.vt.edu/kafura/cs2704/oop.swe.html
https://franz.com/agraph/support/documentation/current/sparql-reference.html#query-warnings
https://franz.com/agraph/support/documentation/current/sparql-reference.html#query-warnings
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/

Knowledge Representation and the Semantic Web: An Historical Overview Journal Name, 2019, Vol. 0, No. 0 14

Intelligence, Palo Alto: Morgan Kaufman Publishing Co.,
1985.
48. T.W. Malone, K.R. Grant, K.Y. Lai, R. Rao and D.A.
Rosenblitt, "Semi-structured messages are surprisingly
useful for computer-supported coordination", Proceedings of
the Conference on Computer-Supported Cooperative Work,
Austin, Texas, December 3 – 5, 1986.
49. B. Harp and R. Neches, "Model Formality in
Human/Computer Collaboration", AAAI '93 Fall
Symposium Series Workshop on Human-Computer
Collaboration: Reconciling Theory, Synthesizing Practice,
October, 1993.
50. J. Yen, R. Neches, M. DeBellis, P. Szekely, P. Aberg,
"BACKBORD: An Implementation of Specification by
Reformulation", Chapter 18 In Intelligent User Interfaces
J.W. Sullivan and S.W. Tyler, Eds. New York : Addison-
Wesley ACM Press, pp. 421-444, 1991.
51. S. Higginbotham, "Final bell ringing for MCC", Nov. 3,
2004, [Online] Available From:
https://www.bizjournals.com/austin/stories/2004/11/01/story
3.html [Acessed Feb. 7, 2022].
52. D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M.
Shepherd, “Cyc: toward programs with common sense.”
Communications of the ACM, vol. 33, no. 8, pp. 30-49, 1990,
doi: 10.1145/79173.79176.
53. R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T.
Senator and W. Swartout, "Enabling Technology for
Knowledge Sharing", AI Magazine, 12(3), pp. 36-56, 1991.
54. R. Neches, "Review of D.B. Lenat and R. Guha, Building
Large Knowledge-Based Systems: Representation and
Inference in the Cyc Project", Journal of Artificial
Intelligence, Vol. 61, pp. 65-79, 1993.
55. R. M. MacGregor. "A Description Classifier for the
Predicate Calculus" in Proceedings of the Twelfth National
Conference on Artificial Intelligence, (AAAI 94), 1994 pp.
213-220.
56. R. M. MacGregor, "Retrospective on Loom", [Online]
Available From:
https://www.isi.edu/isd/LOOM/papers/macgregor/Loom_Ret
rospective.html [Accessed: Feb. 7, 2022].
57. M. Genesereth and R. Fikes; "Knowledge Interchange
Format", Version 3.0 Reference Manual; Technical Report
Logic-92-1, Computer Science Department, Stanford
University, Stanford, CA, 1992.
58. T. R. Gruber. The Role of Common Ontology in
Achieving Sharable, Reusable Knowledge Bases. In
Principles of Knowledge Representation and Reasoning:
Proceedings of the Second International Conference,
Cambridge, MA, pp. 601-602. Morgan Kaufmann, 1991.
59. T. Finin, R. Fritzson, D. McKay, R. McEntire, "KQML
as an agent communication language". In Proceedings of the
third international conference on Information and
knowledge management - CIKM '94. 1994, p. 456.
60. Schema.org [Online] Available From:
https://schema.org/, [Acessed: February 3, 2022].
61. K. Yao, I. Ko, R. Neches , R. MacGregor, "Semantic
Interoperability Scripting and Measurements", In
Proceedings of the Working Conference on Complex and

Dynamic Systems Architecture, Brisbane , Australia,
December 2001.
62. M. Frank, P. Szekely, R. Neches, B. Yan, and J. Lopez,
"WebScripter: World-Wide Grass-roots Ontology
Translation via Implicit End-User Alignment",In
Proceedings of the WWW-2002 Semantic Web Workshop,
Honolulu , Hawaii, May 2002.
63 B. Yan, M. Frank, P. Szekely,R. Neches and J. Lopez,
"WebScripter: Grass-roots Ontology Alignment via End-
User Report Creation", In 2nd International Semantic Web
Conference (ISWC2003), Sanibel Island , Florida, Oct 20-23,
2003, pp 676-689.
64. R. Neches and G. Arango, "Design Capture, Information
Technology Issues" In Concurrent Design and Engineering
G. Zack and J. Hopcroft eds., Academic Press, 1993.
65. C. Green, D. Luckham; R. Balzer; T. Cheatham; C. Rich
"Report on a Knowledge-Based Software Assistant", Kestrel
Institute. A996431, Aug. 1983.
66. G. Wiederhold, “Future Needs In Integration Of
Information” International Journal of Cooperative
Information Systems, vol. 9, no. 4, pp. 449-472, 2000, doi:
10.1142/s0218843000000211.
67. Wiederhold, Gio and Michael Genesereth: "The
Conceptual Basis for Mediation Services"; IEEE Expert,
Vol.12 No.5, Sep.-Oct. 1997, pages 38-47.
68. G. Wiederhold, “Mediators in the architecture of future
information systems.” Computer, vol. 25, no. 3, pp. 38-49,
1992, doi: 10.1109/2.121508.
69. J. C. Dos Reis, C. Pruski, M. Da Silveira and C.
Reynaud-Delaître, "DyKOSMap: A framework for mapping
adaptation between biomedical knowledge organization
systems", Journal of Biomedical Informatics,Volume 55, pp.
153-173, ISSN 1532-0464, 2015.
70. B. Yan, "Enabling Laymen to Contribute Content to the
Semantic Web: A Bottom-up Approach to Creating and
Aligning Diversely Structured Data". Ph.D. Dissertation,
University of Southern California, Department of Computer
Science, 2006.
71. T. Hahmann, R.W Powell II, "Automatically Extracting
OWL Versions of FOL Ontologies", In The Semantic Web –
ISWC 2021 A. Hotho Ed. Lecture Notes in Computer
Science, vol 12922. Springer, Cham. 2021.
72. J. Portisch, M. Hladik and H. Paulheim "Background
Knowledge in Schema Matching: Strategy vs. Data", In The
Semantic Web – ISWC 2021. ISWC 2021. Lecture Notes in
Computer Science, A. Hotho Ed. vol 12922. Springer, Cham,
2021.
73. W3C. "Extensible Markup Language (XML) 1.0 (Fifth
Edition)" W3C Recommendation. November 26, 2008.
https://www.w3.org/TR/REC-xml/ [Acessed Nov. 18, 2021].
74. B. Hammersley, Content Syndication with RSS.
Sebastopol: O'Reilly. ISBN 978-0-596-00383-8. 2003.
75. B. DuCharme, Learning SPARQL. Oreilly & Associates
Incorporated, 2013.
76. M. Musen, "The Protégé Project: A Look Back and a
Look Forward", A.I. Matters 1(4), 2015.
77. M. Uschold, Demystifying OWL for the Enterprise.
Morgan & Claypool Publishers, 2018.

https://www.bizjournals.com/austin/stories/2004/11/01/story3.html
https://www.bizjournals.com/austin/stories/2004/11/01/story3.html
https://www.isi.edu/isd/LOOM/papers/macgregor/Loom_Retrospective.html
https://www.isi.edu/isd/LOOM/papers/macgregor/Loom_Retrospective.html
https://schema.org/
https://www.w3.org/TR/REC-xml/

Knowledge Representation and the Semantic Web: An Historical Overview Journal Name, 2019, Vol. 0, No. 0 15

78. M. DeBellis, "A Practical Guide to Building OWL
Ontologies Using Protégé 5.5 and Plugins Edition 3.2", Sept.
2021. [Online] Available From:
https://www.michaeldebellis.com/post/new-protege-pizza-
tutorial [Accessed: Feb. 7, 2022].
79. M. Figuera, P. D. Rohde, and M. Vidal. "Trav-SHACL:
Efficiently Validating Networks of SHACL Constraints",
Proceedings of the Web Conference 2021. Association for
Computing Machinery, New York, NY.
80. A. Singhal, Amit, "Introducing the Knowledge Graph:
things, not strings", May 16, 2012. . [Online] Available
From: https://www.blog.google/products/search/introducing-
knowledge-graph-things-not/ [Accessed: Feb. 9, 2022].
81. N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and
J. Taylor. “Industry-Scale
Knowledge Graphs: Lessons and Challenges”,
Communications of the ACM. Volume 62, Issue 8. pp 36–
43, August 2019.
82. M. DeBellis and B. Dutta. "The Covid-19 CODO
Development Process: An Agile Approach to Knowledge
Graph Development" In Second Indo-American Knowledge
Graph and Semantic Web Conference, Vardhaman College

of Engineering, Hyderabad, Telangana, India. 22-24
November 2021.
83. I. Polikoff, "Knowledge Graphs vs. Property Graphs –
Part I", August 19, 2020. [Online] Available From:
https://tdan.com/knowledge-graphs-vs-property-graphs-part-
1/27140 [Acessed Nov. 18, 2021].
84. J. Hendler. "Whither OWL", May 31, 2016. [Online]
Available From:
https://www.slideshare.net/jahendler/wither-owl [Acessed:
Nov. 18, 2021].
85. Franz Inc. "AllegroGraph 7.2.0 Materialized Reasoner",
[Online] Available From:
https://franz.com/agraph/support/documentation/current/mat
erializer.html#Rule-Sets [Acessed Nov. 18, 2021].
86. J. Holze, "DBpedia Snapshot 2021-09 Release", October
22, 2021. [Online] Available From:
https://www.dbpedia.org/blog/snapshot-2021-09-release/
[Acessed Nov. 18, 2021].
87. H. Paulheim, “Knowledge graph refinement: A survey of
approaches and evaluation methods.” Semantic Web, vol. 8,
no. 3, pp. 489-508, 2016, doi: 10.3233/sw-160218.

https://www.michaeldebellis.com/post/new-protege-pizza-tutorial
https://www.michaeldebellis.com/post/new-protege-pizza-tutorial
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://tdan.com/knowledge-graphs-vs-property-graphs-part-1/27140
https://tdan.com/knowledge-graphs-vs-property-graphs-part-1/27140
https://www.slideshare.net/jahendler/wither-owl
https://franz.com/agraph/support/documentation/current/materializer.html#Rule-Sets
https://franz.com/agraph/support/documentation/current/materializer.html#Rule-Sets
https://www.dbpedia.org/blog/snapshot-2021-09-release/

